ON SOME SUBSTITUTION INSTANCES OF R1 AND L1

WOLFGANG LENZEN

A study of the epistemic correlates of the modal systems between S4 and S5, [4], has drawn my interest to certain modifications of the "factoring" axioms $(cf. [11])^1$

R1 $p \supset (MLp \supset Lp)$

L1 $p \supset (LMLp \supset Lp)$

which characterize S4.4 and S4.04, respectively. The following substitution instances turned out to be particularly interesting:

R1.1 $Mp \supset (MLMp \supset LMp)$

R1.2 $(Lp \supset Lq) \supset (ML(Lp \supset Lq) \supset L(Lp \supset Lq))$

R1.3 $(p \supset Lp) \supset (ML(p \supset Lp) \supset L(p \supset Lp))$

L1.1 $Mp \supset (LMLMp \supset LMp)$

L1.2 $(Lp \supset Lq) \supset (LML(Lp \supset Lq) \supset L(Lp \supset Lq))$

L1.3 $(p \supset Lp) \supset (LML(p \supset Lp) \supset L(p \supset Lp))$

In this note I want to investigate the results of adding these formulae as new axioms to the base of S4 (with a primitive rule of Necessitation). It will be shown that

- (i) S4 + R1.1 is deductively equivalent to S4.2;
- (ii) S4 + R1.2 is deductively equivalent to S4.3.2;
- (iii) S4 + **R1.3** is a new system properly between S4.4 and S4.1.2, or else **R1.3** is a new proper axiom of S4.1.2;
- (iv) S4 + L1.2 is a new system properly between S4.04 and S4 and properly between S4.3.2 and S4;
- (v) S4 + L1.3 is a new system properly between S4.04 and S4.02, or else L1.3 is a new proper axiom of S4.04.

(A) It is well known (cf. [1], p. 252) that in the field of S4 the proper axiom of S4.2,

G1 $MLp \supset LMp$,

entails and is entailed by

G2 $MLp \supset LMLp$.

Substitution $p/\neg p$ in **G2** yields

(1) $ML \neg p \supset LML \neg p$

from which

(2) $\neg LML \neg p \supset \neg ML \neg p$,

i.e.

 $(3) \qquad MLMp \supset LMp$

and thus

R1.1 $Mp \supset (MLMp \supset LMp)$

follows truth-functionally. Hence S4 + R1.1 is contained in S4.2. Conversely, G1 is easily seen to follow from R1.1 in conjunction with the following two S2-theorems:

¹ I assume the reader is familiar with the literature cited in this note, especially with [5] and [6].

 $(4) \qquad MLp \supset Mp$

$$(5) \qquad MLp \supset MLMp.$$

Hence (i), i.e., **R1.1** is another new proper axiom of S4.2.

(*B*) That, in the field of S4, **R1.2** entails the proper axiom of S4.3.2,

F1
$$L(Lp \supset q) \lor (MLq \supset p),$$

can be seen as follows:

(6)	$\neg p \supset (Lp \supset Lq)$	S 1
(7)	$MLq \supset ML(Lp \supset Lq)$	S4°
(8)	$\neg (MLq \supset p) \supset ((Lp \supset Lq) \land ML(Lp \supset Lq))$	(6), (7)
(9)	$(Lp \supset Lq) \supset (ML(Lp \supset Lq) \supset L(Lp \supset Lq))$	R1.2
(10)	$\neg(MLq \supset p) \supset L(Lp \supset Lq)$	(8), (9)
(11)	$L(Lp \supset Lq) \supset L(Lp \supset q)$	S 1
F1	$L(Lp \supset q) \lor (MLq \supset p)$	(10), (11)

Hence S4 + R1.2 contains S4.3.2. For the converse, note that F1 is known to be inferentially equivalent to

F2
$$L(Lp \supset Lq) \lor L(LMLq \supset Lp)$$

(cf. [10], p. 296), and that in S4.3.2 (which contains S4.2) **G2** is derivable. Moreover, as Zeman has pointed out in [11], in S4.2 (and hence in S4.3.2) *ML* distributes over implications. Thus in particular we have

(12)
$$ML(Lp \supset Lq) \supset (MLLp \supset MLLq).$$
 S4.2

Now:

(13)	$(MLLp \supset MLLq) \supset (\neg MLLq \supset \neg MLLp)$	PC
(14)	$\neg MLq \supset \neg MLLq$	S2
(15)	$\neg LMLq \supset \neg MLq$	G2
(16)	$\neg MLLp \supset \neg MLp$	S4°
(17)	$\neg MLp \supset L(Lp \supset Lq)$	$S2^{\circ}$
(18)	$ML(Lp \supset Lq) \supset (\neg LMLq \supset L(Lp \supset Lq))$	(12)-(17)

Furthermore we have:

(19)
$$Lp \supset ((Lp \supset Lq) \supset L(Lp \supset Lq))$$
 S4^o

(20)
$$\neg Lp \supset (LMLq \supset L(Lp \supset Lq)).$$

(18), (19) + (20) truth-functionally entail

R1.2
$$(Lp \supset Lq) \supset (ML(Lp \supset Lq) \supset L(Lp \supset Lq)).$$

Hence (ii), i.e., **R1.2** is another new proper axiom of S4.3.2.

(C) The subsequent deduction shows that

S4.1.4 = S4 + R1.3

is an extension of Zeman's S4.04:

(21)	$p \supset (\neg p \supset L \neg p)$	PC
(22)	$MLp \supset ML(\neg p \supset L\neg p)$	S4°
(23)	$LMLp \supset MLp$	S 1
(24)	$p \supset (LMLp \supset (\neg p \supset L\neg p) \land ML(\neg p \supset L\neg p))$	(21)-(23)

F2

(25)	$(\neg p \supset L \neg p) \supset (ML(\neg p \supset L \neg p) \supset L(\neg p \supset L \neg p))$	R1.3
(26)	$L(\neg p \supset L\neg p) \supset (LMp \supset Lp)$	S2°
(27)	$LMLp \supset LMp$	S 2
L1	$p \supset (LMLp \supset Lp)$	(24)-(27)
Moreover, S4.1.4 also is an extension of S4.1 = S4 $+$		

N1 $L(L(p \supset Lp) \supset p) \supset (MLp \supset p),$

as is proven by the following deduction:

(28)	$MLp \supset ML(p \supset Lp)$	S4°
(29)	$\neg p \supset (p \supset Lp)$	PC
(30)	$\neg(MLp \supset p) \supset ((p \supset Lp) \land ML(p \supset Lp))$	(28), (29)
(31)	$(p \supset Lp) \land ML(p \supset Lp) \supset L(p \supset Lp)$	R1.3
(32)	$\neg(MLp \supset p) \supset \neg(L(p \supset Lp) \supset p)$	(30), (31)
(33)	$\neg(L(p \supset Lp) \supset p) \supset \neg L(L(p \supset Lp) \supset p)$	S 1
N1	$L(L(p \supset Lp) \supset p) \supset (MLp \supset p)$	(32), (33)

Hence we may conclude that S4.1.4 is also an extension of S4.1.2 = S4.1 + L1 (*cf.* [7], p. 383). It is easily checked that matrix $\mathfrak{M5}$ (in [6], p. 350) verifies **R1.3**. Since $\mathfrak{M5}$ is known to reject S4.2 (*cf.* [7] and [6]), S4.1.4 must be properly included in S4.4. Hence (iii).

(**D**) Since

$$(34) \quad LMLMp \supset LMp$$

is a well-known S4-theorem (cf. [3], p. 47), L1.1 is of no further interest.

(*E*) However,

$$S4.03 = S4 + L1.2$$

is an interesting new system. Until presently, the only system known to be contained both in S4.3.2 and in S4.04 was S4 itself. But S4.03 \neq S4! Sobociński's matrix $\mathfrak{M4}$ ([6], p. 350) falsifies **L1.2** for, e.g., p/5, q/2: $(L5 \supset L2) \supset (LML(L5 \supset L2) \supset L(L5 \supset L2)) = (5 \supset 6) \supset LML(5 \supset 6) \supset L(5 \supset 6)) = 2 \supset (LML2 \supset L2) = 2 \supset (LM6 \supset 6) = 2 \supset (L1 \supset 6) = 2 \supset (1 \supset 6) = 2 \supset 6 = 5$. Since $\mathfrak{M4}$ validates both **N1** and the proper axiom of S4.3,

D2 $L(Lp \supset Lq) \lor L(Lq \supset Lp),$

(*cf.* [10], p. 297, [5], p. 310), S4.03 properly contains S4 but is not contained in S4.3.1. We know from [9], p. 382, that S4.02 = S4 + C

L1 $L(L(p \supset Lp) \supset p) \supset (LMLp \supset p)$

is not contained in S4.3.2; since, furthermore, S4.01 = S4 +

$$\Gamma 1 \qquad MLp \supset (LMp \supset LMLp)$$

is not contained in S4.04 (*cf.* [2], p. 569), it follows that S4.03 does not contain any extension of S4 known so far (including the new system S4.021 to be defined in (F) below). Hence (iv).

(*F*) Consider now

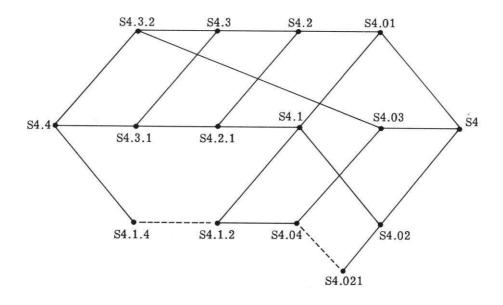
S4.021 = S4 + L1.3!

Since we have

$(35) \quad LMLp \supset LML(p \supset Lp)$

as a theorem of S4°, and since **L1** "relates" to N1 as L1.3 "relates" to R1.3, the proof given in (*C*) showing that R1.3 entails N1 immediately transforms itself into a proof showing that analogously L1.3 entails **L1**. Hence S4.021 is an extension of S4.02. It is a proper one, because matrix $\mathfrak{R0}\mathfrak{G}\mathfrak{G}([6], p. 350)$ verifies **L1** (*cf.* [9], p. 381) but falsifies L1.3 for p/13: (13 \supset L13) \supset (LML(13 \supset L13) \supset L(13 \supset L13)) = (13 \supset 16) \supset (LML(13 \supset 16)) \supset L(13 \supset 16)) = 4 \supset (LML4 \supset L4) = 4 \supset (LM12 \supset 12) = 4 \supset (L1 \supset 12) = 4 \supset (1 \supset 12) = 4 \supset 12 = 9. Since R1.3 does not entail R1, it is very probable that L1.3 does not entail L1 either, but I have no proof for this assumption. However, (v) is without doubt the case.

(G) The following updated diagram:



visualizes the relations among the systems between S4.4 and S4²; the broken line indicates that the respective containment has not yet been proven to be proper.

REFERENCES

- [1] Dummett, M. A., and E. J. Lemmon, "Modal logics between S4 and S5", *Zeitschrift für mathematische Logik und Grundlagen der Mathematik*, vol. 3 (1959), pp. 250-264.
- [2] Goldblatt, R. I., "A new extension of S4"", *Notre Dame Journal of Formal Logic*, vol. XIV (1973), pp. 567-574.
- [3] Hughes, G. E., and M. J. Cresswell, *An Introduction to Modal Logic*, London, Methuen & Co., second edition (1972).
- [4] Lenzen, W., "Epistemologische Betrachtungen zu [S4, S5]", Erkenntnis vol. 14 (1979), pp. 33-56.
- [5] Sobociński, B., "Modal systems S4.4", *Notre Dame Journal of Formal Logic*, vol. V (1964), pp. 305-312.
- [6] Sobociński, B., "Certain extensions of modal systems S4", *Notre Dame Journal of Formal Logic*, vol. XI (1970), pp. 347-368.

² The remaining system between S4 and S5, forming the so-called Z-family, (cf. [8]), are neglected here.

- [7] Sobociński, B., "Note on Zeman's modal system S4.04", *Notre Dame Journal of Formal Logic*, vol. XI (1970), pp. 383-384.
- [8] Sobociński, B., "A new class of modal systems", *Notre Dame Journal of Formal Logic*, vol. XII (1971), pp. 371-377.
- [9] Sobociński, B., "A proper subsystem of S4.04", *Notre Dame Journal of Formal Logic*, vol. XII (1971), pp. 381-384.
- [10] Zeman, J. J., "The propositional calculus **MC** and its modal analogue", *Notre Dame Journal of Formal Logic*, vol. IX (1968), pp. 294-298.
- [11] Zeman, J. J., "Modal systems in which necessity is factorable", *Notre Dame Journal of Formal Logic*, vol. X (1969), pp. 247-256.