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Summary 

This paper is divided in five parts. In section (1) I want to give an overview of the structure of 

the system of Leibniz’s logic. In section (2) I will present the fundamentals of Leibniz’s 

algebra of concepts, L1. In section (3) I will show how by means of a simple, ingenious 

device Leibniz transformed the algebra of concepts, L1, into an algebra of propositions, PL1 

(which turns out to represent a system of strict implication). In section (4) I will describe how 

Leibniz developed the basic idea of possible-worlds-semantics for the interpretation of the 

alethic modal operators ‘necessary’ ‘contingent’, ‘possible’ and ‘impossible’. Finally, in 

section (5) I will argue that Leibniz not only discovered the strict analogy between the logical 

laws for deontic operators ‘forbidden’, ‘obligatory’, and ‘allowed’ on the one hand and the 

alethic operators on the other hand; but that he even anticipated A. R. ANDERSON’s [1958] 

idea of „defining” the former in terms of the latter. 

 

1 The structure of the system of Leibniz’s logic 

Leibniz’s main concern in logic was to generalize the traditional theory of the syllogism to a 

much more general „calculus universalis” which basically consisted of three calculi which I 

refer to as L1, PL1, and L2. The relation between theses calculi (and some further relations to 

certain subsystems L0.4 and L0.8) can be displayed in the following diagram: 

 

The System of Leibniz’s Logic 

L0.4   Calculus de Continentibus ... 

  �    

L0.8   Plus-Minus-Calculus 
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  �    

L1   Algebra of Concepts 

  �  �   

L2      PL1 Calculus of Strict Implication 

 

This diagram shows five interconnected calculi. Four of them form a chain of increasingly 

stronger logics L0.4, L0.8, L1, and L2, where the decimals are meant to indicate the respective 

logical strength of the calculus. They are all concept logics or term-logics, to use a denotation 

familiar from the historiography of logic. The 5th calculus, PL1, however, is a system of 

propositional logic which can be derived from L1 by mapping the concepts and conceptual 

operators into the set of propositions and propositional operators. 

 The most important calculus, no doubt, is L1, the full algebra of concepts that Leibniz 

developed mainly in the General Inquiries of 1686. As has been shown in Lenzen [1984a], 

this logical system is deductively equivalent or isomorphic to the ordinary algebra of sets. 

Moreover, Leibniz happened to provide a complete set of axioms for L1. Thus, in a way, he 

discovered the Boolean algebra 160 years before Boole. 

 Also of interest is the subsystem L0.8. Instead of the conceptual operator of negation, it 

contains the operator of subtraction (and some auxiliary operators). Since, furthermore, the 

conjunction of concepts is symbolised by the sign of addition, this system is often referred to 

as Plus-Minus-Calculus. Leibniz developed it mainly in the famous paper „Non inelegans 

specimen demonstrandi in abstractis” dating from around 1687. The Plus-Minus-Calculus is 

inferior to the full algebra in two respects: First, it is conceptually weaker than the latter, i.e. 

not all operators of L1 are either present or definable in L0.8. Second, unlike in the case of L1, 

the axioms and theorems of the Plus-Minus-Calculus as stated by Leibniz fail to give a 

complete axiomatization of this logic. By the way, the decimal in the name L0.8 can be 
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understood to express the degree of conceptual incompleteness – just 80 percent of the 

operators of L1 can be handled in the Plus-Minus-Calculus. 

 In the same sense, the weakest calculus L0.4 contains only 40 percent of the operators 

of L1. Both the operator of conceptual negation and its substitute, conceptual subtraction, and 

some other operators depending on these are lacking there. Because of the presence of the 

main operators of containment and converse containment, i.e. being contained, Leibniz 

sometimes referred to it as the Calculus de Continentibus et Contentis. He began to develop it 

as early as in 1676; and a final, complete version is already contained in the famous fragment 

„Specimen Calculi Universalis” together with „Ad Specimen Calculi Universalis Addenda” 

dating from around 1680. Leibniz re-formulated this calculus some years later in the so-called 

„Study in the Calculus of Real Addition”, i.e. fragment # XX of Vol. 7 of the Gerhardt-edition 

(GP). In view of the fact that the Plus-Calculus L0.4 is only a weak subsystem of the Plus-

Minus-Calculus, L0.8, is must appear somewhat surprising that many Leibniz-scholars came 

to regard the former as superior to the latter. 

 Now, one characteristic feature of Leibniz’s algebra of concepts is that it is in the first 

instance based upon the propositional calculus, but that if afterwards serves as a basis for 

propositional logic. When Leibniz states and proves the laws of concept logic, he takes the 

requisite rules and laws of propositional logic for granted. Once the former have been 

established, however, the latter can be obtained from the former ones by observing that there 

exists a strict analogy between concepts and propositions which allows one to re-interpret the 

conceptual connectives as propositional connectives. This seemingly circular procedure which 

leads from the algebra of concepts, L1, to an algebra of propositions, PL1, will be explained 

in some detail in section 3 below. At the moment suffice it to say that in the 19th century 

George Boole in roughly the same way first presupposed propositional logic to develop his 

algebra of sets, and only afterwards derived the propositional calculus out of the set-

theoretical calculus. Now, while Boole thus arrived at the classical, two-valued propositional 
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calculus, the Leibnizian procedure instead yields a modal logic of strict implication. As has 

been shown in LENZEN [1987], calculus PL1 is deductively equivalent to the so-called Lewis-

modal system S3°. 

 The final extension of the Leibnizian system is achieved by the theory of „indefinite 

concepts” which constitutes an ingenious anticipation of the modern theory of 1st and 2nd 

order quantification. To be sure, Leibniz’s theory is somewhat defective and certainly it is far 

from complete. But his ideas concerning quantifying about concepts and quantifying about 

individuals (or individual-concepts) were clear and detailed enough to admit of an 

unambiguous reconstruction. The resulting system L2 differs from an orthodox (say, Fregean) 

2nd order logic in the following respect. While normally one begins by quantifying over 

individuals on the 1st level and introduces quantification over predicates only on the 2nd level, 

in the Leibnizian system quantification over concepts comes first, and quantifying over 

individuals is introduced by definition only afterwards. For reasons and space I cannot deal 

with this interesting system here.1 

 

2 Leibniz’s Algebra of Concepts (L1) and its Extensional Interpretation 

The starting point for Leibniz’ universal calculus is the traditional „Aristotelian” theory of the 

syllogism with its categorical forms of universal or particular, affirmative or negative 

propositions which express the following relations between two concepts A and B: 

U.A. Every A is B   U.N. No A is B 

P.A. Some A is B   P.N. Some A is not B 

Within the framework of so-called „Scholastic” syllogistics negative concepts Not-A are also 

taken into account, which shall here be symbolized as A . According to the principle of so-

called obversion, the U.N. ‘No A is B’ is equivalent to a corresponding U.A. with the negative 

predicate: Every A is Not-B. Thus in view of the well-known laws of opposition – according 

                                                 
1  Cf., however, LENZEN [1984a] or chapter 3 of LENZEN [1990]. 
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to which P.N. is the (propositional) negation of U.A. and P.A. is the negation of U.N. – the 

categorical forms can be represented uniformly as follows: 

U.A. Every A is B   U.N. Every A is B  

P.A. ¬(Every A is B )  P.N. ¬(Every A is B). 

The algebra of concepts as developed by Leibniz in some early fragments of around 1679 and 

above all in the GI  of 1686 grows out of this syllogistic framework by three achievements. 

First, Leibniz drops the expression ‘every’ [‘omne’] and formulates the U.A. simply as ‘A is 

B’ [‘A est B’] or also as ‘A contains B’ [‘A continet B’]. This fundamental proposition shall 

here be symbolized as ‚A∈B’, and the negation ¬(A∈B) will be abbreviated as ‚A∉B’. 

Second, Leibniz introduces the new operator of conceptual conjunction which combines two 

concepts A and B by juxtaposition to AB. Third, Leibniz disregards all traditional restrictions 

concerning the number of premises and concerning the number of concepts in the premises of 

a syllogism. Thus arbitrary inferences between sentences of the form A∈B will be taken into 

account, where the concepts A and B may be arbitrarily complex, i.e. they may contain 

negations and conjunctions of other concepts. Let the resulting language be referred to as L1.  

One possible axiomatization of L1 would take (besides the tacitly presupposed 

propositional functions ¬, ∧, ∨, →, and ↔) only negation, conjunction and the ∈-relation as 

primitive conceptual operators. As regards the relation of conceptual containment, A∈B, it is 

important to observe that Leibniz’s formulation ‘A contains B’ pertains to the so-called 

intensional interpretation of concepts as ideas, while we here want to develop an extensional 

interpretation in terms of sets of individuals, viz. the sets of all individuals that fall under the 

concepts A and B, respectively. Leibniz explained the mutual relationship between the 

„intensional” and the extensional point of view in the following passage of the New Essays on 

Human understanding: 

„The common manner of statement concerns individuals, whereas Aristotle’s refers rather to ideas or 

universals. For when I say Every man is an animal I mean that all the men are included amongst all 
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the animals; but at the same time I mean that the idea of animal is included in the idea of man. 

‘Animal’ comprises more individuals than ‘man’ does, but ‘man’ comprises more ideas or more 

attributes: one has more instances, the other more degrees of reality; one has the greater extension, 

the other the greater intension” (cf. GP 5: 469; my translation). 

If ‚Int(A)’ and ‚Ext(A)’ abbreviate the „intension“ and the extension of a concept A, 

respectively, then the so-called law of reciprocity can be formalized as follows: 

(RECI 1) Int(A) ⊆ Int (B) ↔ Ext(A) ⊇ Ext(B). 

This principle immediately entails that two concepts have the same ”intension” if and only if 

they also have the same extension: 

(RECI 2) Int(A) = Int (B) ↔ Ext(A) = Ext(B). 

But the latter „law” appears to be patently false! On the basis of our modern understanding of 

intension and extension, there exist many concepts or predicates A, B which have the same 

extension but which nevertheless differ in intension. Consider, e.g., the famous example in 

QUINE [1953: 21], A = ’creature with a heart’, B = ’creature with a kidney’, or the more 

recent observation in SWOYER [1995: 103] (inspired by Quine and directed against RECI 1): 

„For example, it might just happen that all cyclists are mathematicians, so that the extension of the 

concept being a cyclist is a subset of the extension of the concept being a mathematician. But few 

philosophers would conclude that the concept being a mathematician is in any sense included in the 

concept being a cyclist”. 

However, these examples cannot really refute the law of reciprocity as understood by Leibniz. 

For Leibniz, the extension of a predicate A is not just the set of all existing individuals that 

(happen to) fall under concept A, but rather the set of all possible individuals that have that 

property. Thus Leibniz would certainly admit that the intension or „idea” of a mathematician 

is not included in the idea of a cyclist. But he would point out that even if in the real world 

the set of all mathematicians should by chance coincide with the set of all cyclists, there 

clearly are other possible individuals in other possible worlds which are mathematicians and 

not bicyclists (or bicyclists but not mathematicians). In general, whenever two concepts A and 
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B differ in intension, then it is possible that there exists an individual which has the one 

property but not the other. Therefore, given Leibniz’s understanding of what constitutes the 

extension of a concept it follows that A and B differ also in extension.2 

In LENZEN [1983] precise definitions of the „intension“ and the extension of concepts 

have been developed which satisfy the above law of reciprocity, RECI 1. Leibniz’s 

„intensional” point of view thus becomes provably equivalent, i.e. translatable or 

transformable into the more common set-theoretical point of view, provided that the 

extensions of concepts are taken from a universe of discourse, U, to be thought of as a set of 

possible individuals. In particular, the „intensional“ proposition A∈B, according to which 

concept A contains concept B, has to be interpreted extensionally as saying that the set of all 

A’s is included in the set of all B’s. The first condition for the definition of an extensional 

interpretation of the algebra of concepts thus runs as follows:  

(DEF 1) Let U be a non-empty set (of possible individuals), and let φ be a function such 

that φ(A) ⊆ U for each concept-letter A. Then φ is an extensional interpretation 

of Leibniz’s concept logic L1 if 

(1) φ(A∈B) = true iff φ(A) ⊆ φ(B). 

Next consider the identity or coincidence of two concepts which Leibniz usually symbolizes 

by the modern sign ‘=’ or by the symbol ‘∞’, but which he sometimes also refers to only 

informally by speaking of two concepts being the same [idem, eadem]. As stated, e.g., in § 30 

GI , identity or coincidence can be defined as mutual containment: „That A is B et B is A is 

the same as that A and B coincide”, i.e.: 

(DEF 2) A=B ↔df A∈B ∧ B∈A. 

This definition immediately yields the following condition for an extensional interpretation φ: 

(2)  φ(A=B) = true iff φ(A) = φ(B). 

                                                 
2  As regards the ontological scruples against the assumption of merely possible individuals, cf. the famous 

paper „On What There Is“ in QUINE [1953: 1-19] and the critical discussion in LENZEN [1980: 285 sq.]. 
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In most drafts of the „universal calculus”, Leibniz symbolizes the operator of conceptual 

conjunction by mere juxtaposition in the form AB. Only in the context of the Plus-Minus-

Calculus he favored the mathematical ‘+’-sign (sometimes also ‘⊕‘) to express the 

conjunction of A and B. The intended interpretation is straightforward. The extension of AB 

is the set of all (possible) individuals that fall under both concepts, i. e. which belong to the 

intersection of the extensions of A and of B: 

(3)  φ(AB) = φ(A)∩φ(B). 

Let it be noted in passing that the crucial condition (1) which reflects the reciprocity of 

extension and „intension“ would be derivable from conditions (2) and (3) if the relation ∈ 

were defined according to § 83 GI  in terms of conjunction and identity: „Generally, ‘A is B’ 

is the same as ‘A=AB’” (P, 67), i.e. formally: 

(DEF 3) A∈B ↔df A=AB. 

For, clearly, a set φ(A) coincides with the intersection φ(A)∩φ(B) if and only if φ(A) is a 

subset of φ(B)! Furthermore, the relation „A is in B” [A inest ipsi B] may simply be defined 

as the converse of A∈B according to Leibniz’s remark in § 16 GI : „[…] ‘A contains B’ or, as 

Aristotle says, ‘B is in A’” 

(DEF 4) AιB ↔df B∈A. 

In view of the law of reciprocity, one thus obtains the following condition: 

(4) φ(AιB) = true iff φ (A) ⊇ φ(B). 

The next element of the algebra of concepts – and, by the way, one with which Leibniz had 

notorious difficulties – is negation. Leibniz usually expressed the negation of a concept by 

means of the same word he also used to express propositional negation, viz. ‘not’ [non]. 

Especially throughout the GI , the statement that one concept, A, contains the negation of 

another concept, B, is expressed as ‘A is not-B’ [A est non B], while the related phrase ‘A 

isn’t B’ [A non est B] has to be understood as the mere negation of ‘A contains B’. As was 
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shown in LENZEN [1986], during the whole period of the development of the „universal 

calculus” Leibniz had to struggle hard to grasp the important difference between ‘A is not-B’ 

and ‘A isn’t B’. Again and again he mistakenly identified both statements, although he had 

noted their non-equivalence repeatedly in other places. Here the negation of concept A will be 

expressed as ‘A ‘, while propositional negation is symbolized by means of the usual sign ‘¬’. 

Thus ‘A is not-B’ must be formulated as ‘A∈ B ‘, while ‘A isn’t B’ has to be rendered as 

‘¬A ∈B’ or ‘A ∉B’. The intended extensional interpretation of A  is just the set-theoretical 

complement of the extension of A, because each individual which fails to fall under concept 

A eo ipso falls under the negative concept A : 

(5)  φ( A ) = )A(φ . 

Closely related with the operator of negation is that of possibility or self-consistency of 

concepts. Leibniz expresses it in various ways. He often says ‘A is possible’ [A est possibile] 

or ‘A is [a] being’ [A est Ens] or also ‘A is a thing’ [A est Res]. Sometimes the self-

consistency of A is also expressed elliptically by ‘A est’, i.e. ‘A is’. Here the capital letter ‘P’ 

will be used to abbreviate the possibility of a concept A, while the impossibility or 

inconsistency of A shall be symbolized by ‘I (A)’. According to GI , lines 330-331, the 

operator P can be defined as follows: „A not-A is a contradiction. Possible is what does not 

contain a contradiction or A not-A”: 

(DEF 5) P(B) ↔df B∉A A .3 

It then follows from our earlier conditions (1), (3), and (4) that P(A) is true (under the 

extensional interpretation φ) if and only if φ(A) is not empty: 

(6)  φ(P(A)) = true iff φ(A) ≠ ∅. 

At first sight, this condition might appear inadequate, since there are certain concepts – such 

as that of a unicorn – which happen to be empty but which may nevertheless be regarded as 

                                                 
3  This definition might be simplified as follows: P(B) ↔df B∉ B. 
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possible, i.e. not involving a contradiction. Remember, however, that the universe of 

discourse underlying the extensional interpretation of L1 does not consist of actually existing 

objects only, but instead comprises all possible individuals. Therefore the non-emptiness of 

the extension of A is both necessary and sufficient for guaranteeing the self-consistency of A. 

Clearly, if A is possible then there must exist at least one possible individual that falls under 

concept A.  

The main elements of Leibniz’s algebra of concepts may thus be summarized in the 

following diagram. 

 

Element of L1 Symbolization Leibniz’s Notation Set-theoretical 
Interpretation 

Identity A=B A∞B; A=B; coincidunt A et B; ... φ(A) = φ(B) 

Containment A∈B A est B; A continet B φ(A) ⊆ φ(B) 

Converse Containment  AιB A inest ipsi B φ(A) ⊇ φ(B) 

Conjunction AB AB; A+B φ(A) ∩ φ(B) 

Negation A  Non-A )A(φ  

Possibility P(A) A est Ens; A est res; A est possibile φ(A) ≠ ∅ 

 

 

Let’s now have a brief look at some axioms and theorems of L1! The subsequent selection of 

principles, all of which (with the possible exception of the last one) have been stated by 

Leibniz himself, is more than sufficient to derive the laws of the Boolean algebra of sets: 

 

Theorems of L1 Formal version Leibniz’s version 

CONT 1  A∈A „B is B” (GI , § 37) 
CONT 2 A∈B ∧ B∈C → A∈C „[...] if A is B and B is C, A will be C” (GI , § 19) 
CONT 3 A∈B ↔ A=AB „Generally ‘A is B’ is the same as ‘A = AB’” ( GI , § 

83) 
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CONJ 1 A∈BC ↔ A∈B ∧ A∈C „That A contains B and A contains C is the same 
as that A contains BC” (GI , § 35; cf. P 58, note 4) 

CONJ 2 AB∈A „AB is A” ( C, 263) 
CONJ 3 AB∈B „AB is B” ( GI , § 38) 
CONJ 4 AA = A „AA = A” ( GI , § 171, Third) 
CONJ 5 AB = BA „AB ∞ BA” (C. 235, # (7)) 
NEG 1 A =A „Not-not-A = A” (GI , § 96) 

NEG 2 A ≠ A  „A proposition false in itself is ‘A coincides with 
not-A’” ( GI , § 11) 

NEG 3 A∈B ↔ B ∈ A  „In general, ‘A is B’ is the same as ‘Not-B is not-
A’” ( GI , § 77) 

NEG 4 A ∈ AB  „Not-A is not-AB” (GI , § 76a) 

NEG 5 [P(A) ∧] A∈B → A∉ B  „If A is B, therefore A is not not-B” (GI , § 91) 

POSS 1 I (A B ) ↔ A∈B „if I say ‘A not-B is not’, this is the same as if I 

were to say [...]’A contains B’” (GI , § 200).4 
POSS 2 A∈B ∧ P(A) → P(B) „If A contains B and A is true, B is also true” (GI , 

§ 55)5 
POSS 3 I (A A ) „A not-A is not a thing” (GI , § 171, Eighth) 

POSS 4 A A ∈B „[...] the round square is a quadrangle with null-
angles. For this proposition is true in virtue of an 

impossible hypothesis” (GP 7, 224/5)6 
 

CONT 1 and CONT 2 show that the relation of containment is reflexive and transitive: Every 

concept contains itself; and if A contains B which in turn contains C, then A also contains C. 

CONT 3 shows that the fundamental relation A∈B might be defined in terms of conceptual 

conjunction (plus identity).  

CONJ 1 is the decisive characteristic axiom for conjunction, and it establishes a 

connection between conceptual conjunction on the one hand and propositional conjunction on 

                                                 
4  Parkinson translates Leibniz’s „Si dicam AB non est ...“ somewhat infelicitous as „If I say ‚AB does not 

exist’...“ thus blurring the distinction between (actual) existence and mere possibility. For an alternative 
formulation of Poss 1 cf. C., 407/8: „[…] si A est B vera propositio est, A non-B implicare 
contradictionem”, i.e. ‘A is B’ is a true proposition if A non-B includes a contradiction. 

5  At first sight this quotation might seem to express some law of propositional logic such as modus ponens: If 
A→B and A, then B. However, as Leibniz goes on to explain, when applied to concepts, a „true“ term is to 
be understood as one that is self-consistent: „[...] By ‚a false letter’ I understand either a false term (i.e. one 
which is impossible, or, is a non-entity) or a false proposition. In the same way ‚true’ can be understood as 
either a possible term or a true proposition“ (ibid.). As to the contraposited form of POSS 2, A∈B ∧ I (B) → 
I (A), cf. also the special case in C., 310: „Et sanè si DB est non Ens [...] etiam CDB erit non ens“. 

6  As the text-critical apparatus in A VI, 4, 293 reveals, Leibniz had originally added: „Nimirum de impossibile 
concluditur impossibile“. So in a certain way he was aware of the principle „ex contradictorio quodlibet“ 
according to which not only a contradictory proposition logically entails any arbitrary proposition, but also a 
contradictory or „impossible“ concept contains any other concept. 
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the other: Concept A contains ‘B and C’ iff A contains B and A also contains C. The 

remaining theorems CONJ 2 - CONJ 5 may be derived from CONJ 1 with the help of 

corresponding truth-functional tautologies.  

Negation is axiomatized by means of three principles, the law of double negation NEG 

1, the law of consistency NEG 2, which says that every concepts differs from its own negation, 

and the well known principle of contraposition, NEG 3, according to which concept A 

contains concept B iff B  contains A . The further theorem NEG 4 may be obtained from NEG 

3 in virtue of CONJ 2.  

The important principle POSS 1 says that concept A contains concept B iff the 

conjunctive concept A Not-B is impossible. This principle also characterizes negation, though 

only indirectly, since according to DEF 4 the operator of self-consistency of concepts is 

definable in terms of negation and conjunction. POSS 2 says that a term B which is contained 

in a self-consistent term A will itself be self-consistent. POSS 3 easily follows from POSS 1 in 

virtue of CONT 1. POSS 4 is the counterpart of what one calls „ex contradictorio quodlibet” in 

propositional logic: An inconsistent concept contains every other concept! This law was not 

explicitly stated by Leibniz but it may be regarded as a genuinely Leibnizian theorem because 

it follows from POSS 1 and POSS 3 in conjunction with the observation that, since AA  is 

inconsistent, so is, according to POSS 2, also AA B . 

As was shown in LENZEN [1984b: 200], the set of principles {CONT 1, CONT 2, CONJ 

1, NEG 1, POSS 1, POSS 2} already provides a complete axiomatization of the algebra of 

concepts which is isomorphic to the Boolean algebra of sets. 

 

3 Leibniz’s Calculus of Strict Implication 

Although Leibniz never spent much time for the investigation of the proper laws of 

propositional logic, he must yet be credited with the following discovery of utmost 

importance. He devised a simple, but ingenious method to transform the algebra of concepts 
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into an algebra of propositions. Already in the fragment Notationes Generales, probably 

written between 1683 and 16857, Leibniz pointed out to the parallel between the containment 

relation among concepts and the implication relation among propositions. Just as the simple 

proposition ‘A is B’ (where A is the „subject”, B the „predicate”) is true, „when the predicate 

is contained in the subject”, so a conditional proposition ‘If A is B, then C is D’ (where ‘A is 

B’ is designated as ‘antecedent’, ‘C is D’ as ‘consequent’) is true, „when the consequent is 

contained in the antecedent” (cf. A VI, 4, 551). In later works Leibniz compressed this idea 

into formulations such as „a proposition is true whose predicate is contained in the subject or 

more generally whose consequent is contained in the antecedent”.8 The most detailed 

explanation of the basic idea of deriving the laws of the algebra of propositions from the laws 

of the algebra of concepts was sketched in §§ 75, 137 and 189 GI  as follows: 

„If, as I hope, I can conceive all propositions as terms, and hypotheticals as categoricals [...] this 

promises a wonderful ease in my symbolism and analysis of concepts, and will be a discovery of the 

greatest importance” […] 

„We have, then, discovered many secrets of great importance for the analysis of all our thoughts and 

for the discovery and proof of truths. We have discovered [...] how absolute and hypothetical truths 

have one and the same laws and are contained in the same general theorems” […] 

„Our principles, therefore, will be these [...] Sixth, whatever is said of a term which contains a term 

can also be said of a proposition from which another proposition follows” (P 66, 78, 85). 

To conceive all propositions in analogy to concepts („instar terminorum”) means in particular 

that the hypothetical proposition ‘If α then β‘ will be logically treated exactly like the 

fundamental relation of containment between concepts, ‘A contains B’. Furthermore, as 

Leibniz explained elsewhere, negations (and conjunctions) of propositions are to be conceived 

just as negations (and conjunctions) of concepts: 

                                                 
7  Cf. A VI, 4, # 131.  
8  Cf. C. 401: „vera autem propositio est cujus praedicatum continetur in subjecto, vel generalius cujus 

consequens continetur in antecedente“ (my emphasis); cf. also C. 518: „Semper igitur praedicatum seu 
consequens inest subjecto seu antecedenti“. 
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„If A is a proposition or statement, by non-A I understand the proposition A to be false. And if I say ‘A 

is B’, and A and B are propositions, then I take this to mean that B follows from A […] This will also 

be useful for the abbreviation of proofs; thus if for ‘L is A’ we would say ‘C’ and for ‘L is B’ we say 

‘D’, then for this [hypothetical] ‘If L is B, it follows that L is B’ one could substitute ‘C is D’.”9 

One thus obtains the following „mapping” of the primitive formulas of the algebra of 

concepts into primitive formulae of an algebra of propositions: 

A∈B  α → β 

A   ¬α 

AB  α∧β 

As Leibniz himself mentioned, the fundamental law POSS 1 does not only hold for the 

containment-relation between concepts but equally for the entailment relation between 

propositions: 

„A contains B is a true proposition if A non-B entails a contradiction. This applies both to categorical 

and to hypothetical propositions, e.g., ‘If A contains B, C contains D’ can be formulated as follows: 

‘That A contains B contains that C contains D’; therefore ‘A containing B and at the same time C not 

containing D’ entails a contradiction.”10 

Hence A∈B ↔ I (A B ) may be „translated” into (α→β) ↔ ¬◊(α∧¬β). This formula shows 

that Leibniz’s implication is not a material but rather a strict implication. As was already 

noted by RESCHER [1954: 10], Leibniz’s account provides a definition of „entailment in terms 

of negation, conjunction, and the notion of possibility”, for α implies β iff it is impossible that 

                                                 
9  Cf. C., 260, # 16: „Si A sit propositio vel enuntiatio, per non-A intelligo propositionem A esse falsam. Et 

cum dico A est B, et A et B sunt propositiones, intelligo ex A sequi B. […] Utile etiam hoc ad compendiose 
demonstrandum, ut si pro L est A dixissemus C et pro L est B dixissemus D pro ista si L est A sequitur quod 
L est B, substitui potuisset C est D.” 

10  Cf. C., 407: „Vera propositio est A continet B, si A non-B infert contradictionem. Comprehenduntur et 
categoricae et hypotheticae propositiones, v.g. si A continet B, C continet D, potest sic formari: A continere 
B continet C continere D; itaque A continere B, et simul C non continere D infert contradictionem” (second 
emphasis is mine). 
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α is true while β is false. This definition of strict implication which was to be „re-invented”, 

e. g., by C. I. Lewis11 had been formulated also in the „Analysis Particularum”:  

„Thus if I say ‘If L is true it follows that M is true’, this means that one cannot suppose at the same 

time that L is true and that M is false”.12 

As regards the other non-primitive elements of L1, the relation ‘A is in B’ represents, 

according to DEF 4, the converse of A∈B. Hence its propositional counterpart is the „inverse 

implication”, α ← β. According to DEF 2, the coincidence relation A=B is tantamount to 

mutual containment, A∈B ∧ B∈A, which will thus be translated into a mutual implication 

between propositions, (α → β) ∧ (β → α), i.e. into the strict equivalence, α ↔ β. Next, 

according to DEF 5, the possibility or self-consistency of a concept B amounts to the 

conditions B∉A A . In the field of propositions one hence obtains that α is possible, ◊α, if and 

only if α does not entail a contradiction: ¬(α → (β∧¬β)).  

AιB  (α ← β) [↔df (β → α)] 

A=B  α↔β  [↔df (α → β) ∧ (β → α)] 

P(A)  ◊α  [↔df ¬(α → (β∧¬β))] 

Given this „translation”, the basic axioms and theorems of the algebra of concepts listed in 

section 2 may be transformed into the following set of laws of an algebra of propositions:  

 

 Basic Principles of PL1 

IMPL 1  (α → α) 

IMPL 2 ((α → β) ∧ (β→γ)) → (α→γ) 

IMPL 3 (α → β) ↔ (α ↔ α∧β) 

                                                 
11  Cf. e.g., LEWIS & LANGFORD [1932: 124]: „The relation of strict implication can be defined in terms of 

negation, possibility, and product [...] Thus „p implies q“ [...] is to mean „It is false that it is possible that p 
should be true and q false“. 

12  Cf. A VI, 4, 656: „Itaque si dico Si L est vera sequitur quod M est vera, sensus est, non simul supponi potest 
quod L est vera, et quod M est falsa’”. 
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CONJ 1 (α → β∧γ) ↔ ((α→β) ∧ (α→γ)) 

CONJ 2 α∧β → α 

CONJ 3 α∧β → β 

CONJ 4 α∧α ↔ α 

CONJ 5 α∧β ↔ β∧α 

NEG 1 (¬¬α ↔ α) 

NEG 2 ¬(α ↔ ¬α) 

NEG 3 (α → β) ↔ (¬β→ ¬α) 

NEG 4 ¬α → ¬(α∧β) 

NEG 5 [◊α ∧] (α → β) → ¬ (α → ¬β) 

POSS 1 (α → β) ↔ ¬◊(α ∧ ¬β) 

POSS 2 (α → β) ∧ ◊α → ◊β 

POSS 3 ¬◊(α ∧ ¬α) 

POSS 4 (α∧¬α) → β 

 

Although Leibniz didn’t care very much about propositional logic, he happened to put 

forward at least some of these laws in scattered fragments. For instance, in the first juridical 

disputation De Conditionibus the transitivity of the inference relation, IMPL 2, was 

characterized as follows: „The Co[ndition] of the co[ndition] is the co[ndition] of the 

co[nditioned]. If by positing A B will be posited and by positing B C will be posited, then also 

by positing A C will be posited”.13 As regards IMPL 1 and CONJ 2, 3, Leibniz mentions in the 

fragment „De Calculo Analytico Generale” the „Primary Consequences: A is B, therefore A is 

B […] A is B and C is D, therefore A is B, or as well [therefore] C is D”, and the 

                                                 
13  Cf. A VI, 1, 110: „C[onditi]o C[onditio]nis est C[onditi]o C[onditiona]ti. Si posito A positur B, et posito B 

positur C; etiam posito A positur C.” For a discussion of Leibniz’s early work on juridic (or deontic) logic 
cf. SCHEPERS [1975]. 
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corresponding „Axioms […] 3) If A is B, also A is B. If A is B and B is C, also A is B”. 

Furthermore the definition of strict implication in terms of strict equivalence plus conjunction, 

IMPL 3, was exemplified in another fragment as follows: 

„A true hypothetical proposition of first degree is ‘If A is B, and from this it follows that C is D’ […] 

Let the state of affairs ‘A is B’ be called L, and the state of affairs ‘C is D’ be called M. Then one 

obtains L = LM; in this way the hypothetical [proposition] is reduced to a categorical” (cf. C. 408).  

Moreover in „De Varietatibus Enuntiationum” Leibniz put forward principle CONJ 1 for the 

special case A = ‘a is b’, B = ‘e is d’ and C = ‘l is m’ by maintaining that the proposition „If a 

is b it follows that e is d and l is m” can be resolved into the conjunction of the propositions 

„If a is b it follows that e is d” and „If a is b it follows that l is m” (cf. A VI, 4, 129). Versions 

of the principle of double negation, NEG 1, may be found in § 4 GI  or, for the special cases of 

propositions of the type ‘A=B’ and ‘A∈B’, more formally in C. 23514. Finally the „Analysis 

particularum” contains besides the above quoted paraphrase of POSS 1 also the law of 

(propositional) contraposition NEG 3: „If a proposition M […] follows from a proposition L 

[…], then conversely the falsity of the proposition L follows from the falsity of the 

proposition M”. 

The above collection of basic principles does not yet, however, constitute a genuine 

calculus of (modal) propositional logic. At least some additional rules of deduction are 

needed which allow one to derive further theorems from these „axioms“. As was shown in 

LENZEN [1987], Leibniz was well aware of the validity of the rule of (strict) modus ponens: 

(MP)  (α→β), α  |  β 

and of the rule of conjunction: 

(RC)  α, β  |  α ∧ β. 

Furthermore it was argued there that the mapping of L1 into PL1 yields a calculus of strict 

implication in the vicinity of Lewis’ system S2°. This does not mean, however, that Leibniz 

                                                 
14  „Idem sunt A ∞ B [...] et A non non ∞ B”; cf. also C. 262: „A non non est B, idem est quod A est B“ 
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would have favored such a weak system as the proper calculus of (alethic) modal logic. For 

example, Leibniz would certainly have subscribed to the validity of the truth-axiom � α → α 

(or, equivalently, α → ◊α). But, for purely syntactical reasons, these laws can never be 

obtained from corresponding theorems of L1by way of Leibniz’s consideration of 

propositions „instar terminorum”.15 For reasons of space, this issue shall not be discussed 

here further – the reader is referred to the detailed exposition in LENZEN [1987]. Only a few 

more theorems for the modal operators �  und ◊ shall be considered in the subsequent section 

where Leibniz’s version of a possible worlds semantics is represented. 

 

4 Leibniz’s Possible Worlds Semantics 

The fundamental logical relations between necessity, � , possibility, ◊, and impossibility can 

be expressed, e.g., by: 

(NEC 1) � (α) ↔ ¬◊(¬α) 

(NEC 2) ¬◊(α) ↔ � (¬α). 

Of course, these laws were familar already to logicians long before Leibniz. However, 

Leibniz not only formulated, e.g., NEC 1 already as a youth, at the age of 25, as follows:  

„Whenever the question is about necessity, the question is also about possibility, for if something is 

called necessary, then the possibility of its opposite is negated”16 

but he also „proved“ these relations by means of an admirably clear semantic analysis of 

modal operators in terms of „possible cases”, i.e. possible worlds: 

„Possible is whatever can happen  or what is true in some cases 

Impossible is whatever cannot happen  or what is true in no […] case 

Necessary is whatever cannot not happen or what is true in every […] case 

Contingent is whatever can not happen or what is [not] true in some case”.17 

                                                 
15  E.g., α → ◊α could only result from mapping the formula A∈P(A) or A → P(A) into PL1; but none of these 

formulae is syntactically well-formed! 
16  Cf. A VI, 1, 460: „Quoties autem de necessitate quaestio est, de possibilitate quaestio est, nam quid 

necessarium dicitur, possibilitas oppositi negatur”. 
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Hence a proposition α is possible iff α is true in at least one case; α is impossible, iff α is true 

in no case; α is necessary iff α is true in each case; and, finally, α is contingent, i.e. non-

necessary, iff α is not true in at least one case.18 Now this analysis of the truth-conditions for 

modal propositions not only entails the above mentioned laws NEC 1 and 2, but it also gives 

rise to the principle that whenever α is necessary, α will be possible as well, and by 

contraposition: „Because all that is necessary is possible, all that is impossible is 

contingent”:19  

(NEC 3) � α → ◊(α), 

(NEC 4) ¬◊(α) → ¬� (α). 

Leibniz „demonstrates” these laws by reducing them to corresponding laws for (universal and 

existential) quantifiers such as: „If α is true in each case, then α is true in at least one case”. 

These quantificational principles were tacitly presupposed by Leibniz who only mentioned 

them in passing by maintaining (very elliptically), e.g.: „‘All’ is the same as ‘none not’” or 

„‘All not’ is the same as ‘none’”. Cf. the following „proof” of NEC 2: 

„[…] ‘necessarily not happen’ and ‘impossible’ coincide. For also ‘none’ and ‘everything not’ 

coincide. Why so? Because ‘none’ is ‘not something’. ‘Every’ is ‘not something not’. Therefore 

‘everything not’ is ‘not something not not’. The two latter ‘not’ destroy each other, thus remains ‘not 

something’.” 

On the background of certain rules for the negation of the quantifier expressions ‘all’, ‘some’, 

and ‘none’, which reflect the core ideas of the traditional theory of opposition of categorical 

forms, Leibniz thus argues that an impossible proposition which is false in every case is the 

                                                                                                                                                         
17  Cf. A VI, 1, 466: 

„Possibile est quicquid potest  fieri seu quod verum est quodam  casu 
Impossibile est quicquid non potest fieri seu quod verum est nullo [...] casu 
Necessarium est quicquid non potest non fieri seu quod verum est omni [...] casu 
Contingens est quicquid potest non fieri Seu quod verum est quodam non casu.“ 

18  As this quotation shows, Leibniz uses the notion of contingency not in the modern sense of ‚neither 
necessary nor impossible’ but as the simple negation of ‚necessary’. 

19  Cf. A VI, 4, 2759: „Quia omne necessarium est possibile omne impossibile est contingens seu potest non 
fieri“. 
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same as a proposition which is not true in any case. Let it be mentioned in passing that the 

analogue „proof” of NEC 3 contains a minor mistake which is quite typical of Leibniz20: 

„[…] everything which is necessary is possible. For always, when ‘everything is’, also ‘something is’ 

[the case]. Thus if ‘everything is’, ‘not something is not’, or ‘something is not not’. Hence ‘something 

is’”. 21 

To be sure, a necessary proposition α which is true in every case, a fortiori has to be true in at 

least one case, hence α is possible. But this principle - or the corresponding quantificational 

law (∀xα → ∃xα) – cannot be correctly derived from the presupposed equivalence (∀xα ↔ 

¬∃x¬α) plus the law of double negation, (¬¬α ↔ α) in the way attempted by Leibniz. For 

‘not something is not’, i.e. ¬∃x¬α, is not the same as ‘something is not not’, i.e. ∃x¬¬α! 

 It cannot be overlooked, however, that the truth conditions quoted from the early De 

Conditionibus, even when combined with Leibniz’s later views on possible worlds, fail to 

come up to the standards of modern possible worlds semantics, since in Leibniz’s work 

nothing corresponds to the accessibility relation among worlds. Therefore it is almost 

impossible to decide which of the diverse modern systems like T, S4, S5, etc. best conforms 

with Leibniz’s views. According to POSER [1969], Leibniz’s modal logic is tantamount to S5. 

This means in particular that Leibniz accepted the characteristic axiom of S4: 

(NEC 5) � α → � � α. 

Poser pointed out to the following passage in „De Affectibus”: „For what can impossibly be 

actually the case, that can impossibly be possible”22 which rather convincingly shows that, in 

Leibniz’s view, any impossible proposition is impossibly possible: 

(NEC 6) ¬◊α → ¬◊◊α. 

                                                 
20  In so far as, again and again, Leibniz had serious problems in distinguishing ‚non est’ and ‚est non’; cf. 

LENZEN [1986].  
21  Cf. A VI, 1, 469: „[...] omne necessarium est possible. Nam semper, si omnis est, etiam quidam est. Si enim 

Omnis est, non quidam non est seu quidam non non est. Ergo quidam est”. 
22  Cf. Grua, 534: „Nam quod impossibile est esse actu, id impossibile est esse possibile”. 
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However, Poser failed to give any quotation (or any other compelling reason) to show that 

Leibniz would also have accepted the stronger S5-principle ◊α → � ◊α, according to which 

any possible proposition would be necessarily possible. Moreover, as was argued by ADAMS 

[1982], the latter principle appears to be incompatible with Leibniz’s philosophical view of 

necessity as expressed, e.g., in the GI : 

„(133) A true necessary proposition can be proved by reduction to identical propositions, or by 

reduction of its opposite to contradictory propositions; hence its opposite is called ‚impossible’. 

(134) A true contingent proposition cannot be reduced to identical propositions, but is proved by 

showing that if the analysis is continued further and further, it constantly approaches identical 

propositions, but never reaches them.” (P, 77). 

If a necessary proposition α can be reduced in finitely many steps to an „identity”, this means 

that a proposition α is possible if and only if it is not refutable in finitely many steps (i.e. its 

negation cannot be reduced in finitely many steps to an „identity”). But on this understanding 

of possibility and necessity, the S5 principle ◊α → � ◊α appears to be blatantly false. 

 

5 Leibniz’s Deontic logic 

Leibniz saw very clearly that the logical relations between the „Modalia Iuris” obligatory, 

permitted and forbidden exactly mirror the corresponding relations between the alethic modal 

operators necessary, possible and impossible and that therefore all laws and rules of alethic 

modal logic may be applied to deontic logic as well: 

„Just like ‘necessary’, ‘contingent’, ‘possible’ and ‘impossible’ are related to each other, so also 

‘obligatory’, ‘not obligatory’, ‘permitted’, and ‘forbidden’”.23 

This structural analogy rests on the important discovery that the deontic notions can be 

defined by means of the alethic notions plus the additional „logical” constant of a morally 

perfect man [„vir bonus”]. Such a „virtuous man”, b, is characterized by the requirements that 

                                                 
23  Cf. A VI, 4, 2762: „Uti se habent inter se necessarium, contingens, possibile, impossibile; ita se habent 

debitum, indebitum, licitum, illicitum“. 
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(1) b strictly obeys all laws, (2) b always acts in such a way that he does no harm to anybody, 

and (3) b loves or is benevolent to all other people.24 Given this understanding of the „vir 

bonus”, b, Leibniz explains: 

„Obligatory is  what is  necessary for the virtuous man as such 

not obligatory is what is   contingent for the virtuous man as such  

permitted is  what is  possible  for the virtuous man as such  

forbidden is  what is  impossible for the virtuous man as such.”25 

If we express the restriction of the modal operators �  and ◊ to the virtuous man by means of a 

subscript ‚b’, these definitions can be formalized as follows: 

(DEON 1) O(α) ↔ � b(α) 

(DEON 2) E(α) ↔ ◊b(α)26 

(DEON 3) F(α) ↔ ¬◊b(α) 

Now, as Leibniz mentioned in passing, all that is unconditionally necessary will also be 

necessary for the virtuous man as such:27  

(NEC 7) � (α) → � b(α). 

Hence the fundamental laws for the deontic operators can be derived from corresponding laws 

of the alethic modal operators in much the same way as ANDERSON [1958] reduced deontic 

logic to alethic modal logic. As Leibniz pointed out, two different classes of theorems may be 

                                                 
24  Cf. A VI, 1, 466: „Vir bonus est quisquis amat omnes“; A VI, 4, 2851: „Vir bonus est qui benevolus est erga 

omnes“ and A VI, 4, 2856: „Vir bonus censetur, qui hoc agit ut prosit omnibus noceat[que] nulli.“ It is 
interesting to note that Leibniz denotes the entire discipline of jurisprudence as the „science of the virtuous 
man“ („scientia viri boni“) and justice as the „voluntas viri boni“. 

25  Cf. A VI, 4, 2758: 
„Debitum est, quod viro bono qua tali necessarium 
Indebitum est, quod viro bono qua tali contingens 
Licitum est, quod viro bono qua tali possibile 
Illicitum est, quod viro bono qua tali impossibile.“ 
In the former edition in Grua 605 ‘debitum’ was mistakenly associated with ‘contingens’. Cf. also A VI, 4, 
2863: „quod Viro bono possibile, impossibile, necessarium est, si nomen suum tueri velit, id justum sive 
licitum, injustum, ac denique debitum esse.“ 

26  We here use the letter ‚E’ (reminding of the German ‚erlaubt’) instead of ‚P’ for ‚permitted’ in order to 
avoid any confusions with the operator for the possibility (or self-consistency) of concepts! 

27  Cf. A VI, 4, 2759: „Nam omne necessarium est necessarium viro bono”. 



 23 

distinguished. First we have „Theorems in which the juridic modalities are combined by 

themselves”, i.e. theorems describing the logical relations among the deontic operators, e.g.: 

„Everything which is obligatory is permitted […] Everything which is forbidden is not obligatory […] 

Nothing which is obligatory is forbidden […] Nothing which is forbidden is obligatory […] 

Everything that is forbidden is obligatory to omit. And everything that is obligatory to omit is 

forbidden. […] Everything that is forbidden to omit is obligatory and everything which is obligatory is 

forbidden to omit […] Everything which is not obligatory is permitted to omit and everything that is 

permitted to omit is not obligatory”.  

(DEON 4a) O(α) → E(α) 

(DEON 4b) ¬E(α) → ¬O(α) 

(DEON 5a) O(α) → ¬F(α)  

(DEON 5b) F(α) → ¬O(α) 

(DEON 6) F(α) ↔ O(¬α) 

(DEON 7) O(α) ↔ F(¬α) 

(DEON 8) ¬O(α) ↔ E(¬α) 

As Leibniz „demonstrates” (or, at least, makes plausible), these laws are immediate 

counterparts of the well-known logical relations between the alethic modalitis. E.g., 

concerning DEON 6 he remarks: 

„Everything which is forbidden is obligatory to omit. And everything that is obligatory to omit is 

forbidden, i.e. ‘forbidden’ and ‘obligatory to omit’ coincide. Because ‘necessarily not happen’ and 

‘impossible’ coincide. For also ‘none’ and ‘everything not’ coincide”. (Cf. A VI, 1, 469). 

As a second class of theorems one obtains certain „Theorems in which the juridic modalities 

are combined with the logical modalities”. Thus in the „Elementa Juris Naturalis” Leibniz 

mentions the following principles concerning the relations between the alethic concepts 

‘necessary’, ‘possible’ and ‘impossible’ on the one hand and the deontic notions ‘obligatory, 
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‘permitted’ and ‘forbidden’ on the other hand: „Everything which is necessary is obligatory”, 

or, by contraposition: „Everything that is not obligatory is not necessary but contingent”28: 

(DEON 9a) � (α) → O(α) 

(DEON 9b) ¬O(α) → ¬� (α) 

Furthermore: „Everything that is necessary is permitted”, or, again by contraposition, 

„Everything that is forbidden is not necessary but contingent” (ibid.): 

(DEON 10a) � (α) → E(α) 

(DEON 10b) ¬E(α)→¬� (α) 

Next, „Everything that is permitted is possible”, or „Everything that is impossible is not 

permitted” (ibid.): 

(DEON 11a) E(α) → ◊(α) 

(DEON 11b) ¬◊(α) → ¬E(α) 

Finally, „Everything which is obligatory is possible”, or „Everything which is impossible is 

not obligatory, i.e. may be omitted by the virtuous man”29: 

(DEON 12a) O(α) → ◊(α) 

(DEON 12b) ¬◊(α) → ¬O(α) 

To illustrate Leibniz’s way of demonstrating these laws in „Modalia et Elementa Juris 

Naturalis” let us consider DEON 10a which is formulated there with the word ‚licitum’ instead 

of ‚justum’ expressing ‘permitted’: 

„Everything which is necessary is permitted, i.e. necessity has no law. 

For everything which is necessary is necessary for the virtuous man. If something is necessary for the 

virtuous man, its opposite is impossible for the virtuous man. What is impossible for the virtuous man 

is anyway not possible for the virtuous man as such, i.e. it is not permitted. Therefore the opposite of 

                                                 
28  Cf. A VI, 1, 470: „Omne indebitum nec necessarium est, sed contingens“ 
29  Cf. A VI, 1, 470: „Omne impossibile indebitum seu omissibile est viro bono“. 
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something necessary is not permitted. However, if the opposite of something is not permitted, then 

itself is permitted.”30 

By means of the „bridge principle” NEC 7, � (α) is first shown to entail � b(α). Next Leibniz 

makes use of the following law NEC 8 which relativizes the usual equivalence NEC 1 to the 

„virtuous man”: 

(NEC 8) � b(α) ↔ ¬◊b(¬α). 

According to DEON 2, the resulting formula ¬◊b(¬α) is equivalent to ¬E(¬α) which in turn 

entails the desired conclusion E(α) by way of the further theorem: 

(DEON 13) ¬E(¬α) → E(α). 

Note, incidentally, that in an earlier proof which was later deleted by Leibniz, the conclusion 

◊b(α) or E(α) had been obtained more directly by inferring � b(α) from the premise � (α) and 

then making use of the following law which relativizes NEC 3 to the person b: 

(NEC 9) � b(α) → ◊b(α) 

For, as Leibniz remarks: „Everything which is necessary for the virtuous man is anyway 

possible for the virtuous man as such, i.e. it is permitted”31. Similarly Leibniz proves DEON 

12b as follows:  

„Nothing which is impossible is obligatory, i.e. there is no obligation for impossibles. 

For everything which is impossible is impossible for the virtuous man. Nothing which is impossible 

for the virtuous man is anyway possible for the virtuous man as such. What is not possible for the 

virtuous man as such is not necessary for the virtuous man as such, i.e. it is not obligatory”.32 

                                                 
30  Cf. A VI, 4, 2759/60: „Omne necessarium est licitum, seu necessitas non habet legem.Nam omne 

necessarium est necessarium viro bono. Quod est necessarium viro bono, ejus oppositum est impossibile viro 
bono. Quod impossibile viro bono utcunque non est possibile viro bono qua tali seu licitum. Ergo necessarii 
oppositum non est licitum. Cujus autem oppositum non est licitum, id ipsum est licitum.“ 

31  Cf. A VI, 4, 2759: „Omne necessarium viro bono utcunque est possibile viro bono qua tali; hoc est licitum”.  
32  Cf. A VI, 4, 2759: „Nullum impossibile est debitum, seu impossibilium nulla est obligatio. Nam omne 

impossibile est impossibile viro bono. Nullum impossibile viro bono utcunque est possibile viro bono qua 
tali. Quod non est possibile viro bono qua tali non est necessarium viro bono qua tali, seu non est debitum.“ 
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Here again by means of the „bridge principle” NEC 7, ¬◊b(α) is first shown to follow from 

� (¬α) or ¬◊(α); second, NEC 9 transformed by contraposition into ¬◊b(α) → ¬� b(α) is used 

to derive ¬� b(α) which, thirdly, according to DEON 1, gives the desired conclusion ¬O(α). 
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