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Summary

This paper is divided in five parts. In section (1) | want to give\emview of the structure of
the system of Leibniz’s logic. In section (2) | will present thadamentals of Leibniz’s
algebra of conceptd,1. In section (3) | will show how by means of a simple, ingenious
device Leibniz transformed the algebra of concdptsjnto an algebra of proposition8L1
(which turns out to represent a systenstoict implication). In section (4) | will describe how
Leibniz developed the basic idea of possible-worlds-semanticthédointerpretation of the
alethic modal operators ‘necessary’ ‘contingent’, ‘possible’ angpdssible’. Finally, in
section (5) I will argue that Leibniz not only discovered thetsémalogy between the logical
laws for deontic operators ‘forbidden’, ‘obligatory’, and ‘allowed’ on tme hand and the
alethic operators on the other hand; but that he even anticipated AIDRRZONS [1958]

idea of ,defining” the former in terms of the latter.

1 The structure of the system of Leibniz’s logic
Leibniz’'s main concern in logic was to generalize the tradititmabry of the syllogism to a
much more general ,calculus universalis” which basically ctewsisf three calculi which |
refer to ad_1, PL1, andL2. The relation between theses calculi (and some further relations

certain subsystems L0.4 and L0.8) can be displayed in the following diagram:

The System of Leibn&Logic

LO.4 Calculus de Continentibus

LO.8 Plus-Minus-Calculus




L1 Algebra of Concepts
NN

L2 PL1 Calculus of Strict Implication

This diagram shows five interconnected calculi. Four of them forchain of increasingly
stronger logic4.0.4, L0.8 L1, andL2, where the decimals are meant to indicate the respective
logical strength of the calculus. They arecalhcept logic®or term-logics, to use a denotation
familiar from the historiography of logic. The 5th calculéd,1, however, is a system of
propositionallogic which can be derived fromnl by mapping the concepts and conceptual
operators into the set of propositions and propositional operators.

The most important calculus, no doubtLis the full algebra of concepts that Leibniz
developed mainly in th&eneral Inquiriesof 1686. As has been shown in Lenzen [1984a],
this logical system is deductively equivalent or isomorphic tootidknary algebra of sets.
Moreover, Leibniz happened to provide a complete set of axionislfdrhus, in a way, he
discovered the Boolean algebra 160 years before Boole.

Also of interest is the subsystdri.8. Instead of the conceptual operator of negation, it
contains the operator @lubtraction(and some auxiliary operators). Since, furthermore, the
conjunction of concepts is symbolised by the sign of addition, teiermyis often referred to
as Plus-Minus-Calculus Leibniz developed it mainly in the famous paper ,Non inelegans
specimen demonstrandi in abstractis” dating from around 1687. Thd/iRlus-Calculus is
inferior to the full algebra in two respects: First, it @ceptually weaker than the latter, i.e.
not all operators dfl are either present or definablelin.8 Second, unlike in the caseldf,
the axioms and theorems of the Plus-Minus-Calculus as stateckibgid. fail to give a

complete axiomatization of this logic. By the way, the detimahe namelL0.8 can be



understood to express the degree of conceptual incompleteness — juscét pé the
operators of.1 can be handled in the Plus-Minus-Calculus.

In the same sense, the weakest calcuug contains only 40 percent of the operators
of L1. Both the operator of conceptual negation and its substitute, conceptuatsoibtrand
some other operators depending on these are lacking there. Betalisgyesence of the
main operators of containment and converse containment, i.e. being contaiiedz Le
sometimes referred to it as tBalculus de Continentibus et Contentie began to develop it
as early as in 1676; and a final, complete version is alreadgicedtin the famous fragment
~Specimen Calculi Universalis” together with ,Ad SpecimericGk Universalis Addenda”
dating from around 1680. Leibniz re-formulated this calculus some lgarsn the so-called
»otudy in the Calculus of Real Addition”, i.e. fragment # XX of Vol. 7 of the Gerhardibadit
(GP). In view of the fact that the Plus-Calculu8.4 is only a weak subsystem of the Plus-
Minus-Calculus 0.8, is must appear somewhat surprising that many Leibniz-schalars c
to regard the former as superior to the latter.

Now, one characteristic feature of Leibniz’s algebra of cosaspthat it is in the first
instancebased uporthe propositional calculus, but that if afterwards serves lagses for
propositional logic. When Leibniz states and proves the laws of colomgpt he takes the
requisite rules and laws of propositional logic for granted. Oncefdimer have been
established, however, the latter can be obtained from the formebymdserving that there
exists a strict analogy betweeanceptsaandpropositionswhich allows one to re-interpret the
conceptual connectives as propositional connectives. This seemingly circuksdyrewhich
leads from the algebra of concetg, to an algebra of propositionBL1, will be explained
in some detail in section 3 below. At the moment suffice it fotkat in the 19th century
George Boole in roughly the same way first presupposed propositagialtd develop his
algebra of sets, and only afterwards derived the propositional esl@ut of the set-

theoretical calculus. Now, while Boole thus arrived at the dakdiwo-valued propositional
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calculus, the Leibnizian procedure instead yieldsaalal logic of strict implication. As has
been shown in ENzEN [1987], calculuPL1 is deductively equivalent to the so-called Lewis-
modal system S3°.

The final extension of the Leibnizian system is achieved bythbkory of ,indefinite
concepts” which constitutes an ingenious anticipation of the modern tbédy and 2
order quantification. To be sure, Leibniz’s theory is somewhat dedeatid certainly it is far
from complete. But his ideas concerning quantifying about concegtgj@antifying about
individuals (or individual-concepts) were clear and detailed enough tat asfman
unambiguous reconstruction. The resulting sydt@ndiffers from an orthodox (say, Fregean)
2" order logic in the following respect. While normally one beginsgbgntifying over
individuals on the % level and introduces quantification over predicates only on"thie!,
in the Leibnizian system quantification oveonceptscomes first, and quantifying over

individuals is introduced by definition only afterwards. For reasonsspade | cannot deal

with this interesting system hete.

2 Leibniz’s Algebra of Concepts (L1) and its Extensional Interpretatio

The starting point for Leibniz’ universal calculus is the traditigAaistotelian” theory of the
syllogism with its categorical forms of universal or paie, affirmative or negative
propositions which express the following relations between two contegid B:

UA. EveryAisB UN. NoAisB

P.A. SomeAisB P.N. Some AisnotB
Within the framework of so-called ,,Scholastic” syllogisticgagve concepts Not-A are also
taken into account, which shall here be symbolized asAccording to the principle of so-
called obversion, the U.N. ‘No A is B’ is equivalent to a corresponding U.A. with théiveega

predicate: Every A is Not-B. Thus in view of the well-known law®pposition — according

1 cf., however, ENZEN [19844a] or chapter 3 ofdNzEN [1990].
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to which P.N. is the (propositional) negation of U.A. and P.A. isndgation of U.N. — the
categorical forms can be represented uniformly as follows:

U.A. EveryAisB UN. EveryAisB

P.A. =(EveryAisB) P.N. -(Every Ais B).
The algebra of concepts as developed by Leibniz in some eaytgdrdas of around 1679 and
above all in theGl of 1686 grows out of this syllogistic framework by three achmes.
First, Leibniz drops the expression ‘every’ ['omne’] and formuldbesU.A. simply as ‘A is
B’ ['A est B’] or also as ‘A contains B’ ['A continet B’]. fiis fundamental proposition shall
here be symbolized as [M’, and the negatior- (ALB) will be abbreviated as JAB’.
Second, Leibniz introduces the new operator of concepamiinctionwhich combines two
concepts A and B by juxtaposition to AB. Third, Leibniz disregardsaditional restrictions
concerning the number of premises and concerning the number of comctp premises of
a syllogism. Thus arbitrary inferences between sentencée ébitm ATIB will be taken into
account, where the concepts A and B may be arbitrarily comp&xthey may contain
negations and conjunctions of other concepts. Let the resulting languagertsel tefad_1.

One possible axiomatization dfl would take (besides the tacitly presupposed
propositional functions:, [J, [J, -, and - ) only negation, conjunction and therelation as
primitive conceptual operators. As regards the relation of concepinainment, AIB, it is
important to observe that Leibniz’'s formulation ‘A contains B’ pegato the so-called
intensionalinterpretation of concepts &eas while we here want to develop artensional
interpretation in terms dfets of individualsviz. the sets of all individuals that fall under the
concepts A and B, respectively. Leibniz explained the mutual relbtprizetween the
.intensional” and the extensional point of view in the following pgesa theNew Essays on

Human understanding

»,The common manner of statement concerns indivegjughereas Aristotle’s refers rather to ideas or

universals. For when | say Every man is an animalelan that all the men are included amongst all
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the animals; but at the same time | mean that tfeaiof animal is included in the idea of man.
‘Animal’ comprises more individuals than ‘man’ dpdmit ‘man’ comprises more ideas or more
attributes: one has more instances, the other niegrees of reality; one has the greater extension,

the other the greater intensiorfef. GP 5: 469; my translation).

If ,Int(A)’ and ,Ext(A) abbreviate the ,intension“ and the extéms of a concept A,

respectively, then the so-callv of reciprocitycan be formalized as follows:

(ReCI 1) Int(A) O Int (B) ~ Ext(A) O Ext(B).

This principle immediately entails that two concepts have thme Santension” if and only if

they also have the same extension:

(Rec1 2) Int(A) = Int (B) -~ Ext(A) = Ext(B).

But the latter law” appears to be patently false! On thesbafsourmodernunderstanding of
intension and extension, there exist many concepts or predicaisvAich have the same
extension but which nevertheless differ in intension. Consider, e.g.a@u$ example in
QUINE [1953: 21], A =’creature with a heart’, B = ’creature with a kidney' the more

recent observation inVBYER [1995: 103] (inspired by Quine and directed agairestiR):

.For example, it might just happen that all cyclisire mathematicians, so that the extension of the
conceptbeing a cyclistis a subset of the extension of the condeg a mathematiciarBut few
philosophers would conclude that the condaging a mathematiciais in any sense included in the
conceptbeing a cyclist

However, these examples cannot really refute the law of oeiipas understood by Leibniz
For Leibniz, theextensionof a predicate A is not just the set of eMistingindividuals that
(happen to) fall under concept A, but rather the set giaakibleindividuals that have that
property. Thus Leibniz would certainly admit that the intension or idéa mathematician
is not included in the idea of a cyclist. But he would point out that déve thereal world
the set of all mathematicians should by chance coincide witlsdhef all cyclists, there
clearly are other possible individuais other possible worldsvhich are mathematicians and

not bicyclists (or bicyclists but not mathematicians). In general, wheh&geconcepts A and
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B differ in intension, then it is possible that there existanaividual which has the one

property but not the other. Therefore, given Leibniz’s understanding ofashatitutes the

extension of a concept it follows that A and B differ also in exter&ion.

In LENZEN [1983] precise definitions of the ,intension* and the extension of concepts
have been developed which satisfy the above law of reciprockgl R. Leibniz’s
.ntensional” point of view thus becomes provably equivalent, i.e. tratdéat or
transformable into the more common set-theoretical point of view, pobvibat the
extensions of concepts are taken from a universe of discourse, Uthougit of as a set of
possible individualsin particular, the ,intensional* proposition[#8, according to which
concept Acontainsconcept B, has to be interpreted extensionally as saying thsettioé all
A’s is includedin the set of all B’s. The first condition for the definition of extensional
interpretation of the algebra of concepts thus runs as follows:

(DEF1) Let U be a non-empty set (of possible individuals), ang lbet a function such
that@(A) [0 U for each concept-letter A. Thgns an extensional interpretation
of Leibniz’s concept logit.1 if
(1) @AOB) = true iff @A) O @B).

Next consider the identity aoincidenceof two concepts which Leibniz usually symbolizes

by the modern sign ‘=" or by the symbeab’; but which he sometimes also refers to only

informally by speaking of two concepts being the same [idemngade stated, e.g., in § 30

Gl, identity or coincidence can be defined as mutual containmentt Ai@aB et B is A is

the same as that A and B coincide”, i.e.:

(DEF 2) A=B o ¢ ALB OBLCA.

This definition immediately yields the following condition for an extensiamakpretatiory:

(2)  @A=B) = true iff (A) = (B).

2 pAs regards the ontological scruples against sise@ption of merely possible individuals, cf. thenbus
paper ,,On What There Is* in @NE [1953: 1-19] and the critical discussion iBNzeN [1980: 285 sq.].
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In most drafts of the ,universal calculus”, Leibniz symbolizes dperator of conceptual
conjunctionby mere juxtaposition in the form AB. Only in the context of thesfMinus-
Calculus he favored the mathematical ‘+'-sign (sometimes dl$) to express the
conjunction of A and B. The intended interpretation is straightforwind. extension of AB
is the set of all (possible) individuals that fall under both cosceépe. which belong to the
intersectionof the extensions of A and of B:

(3)  @AB)=@A)N@B).
Let it be noted in passing that the crucial condition (1) wheftects the reciprocity of
extension and ,intension“ would be derivable from conditions (2) and @eifrelation
were defined according to § in terms of conjunction and identity: ,Generally, ‘A is B’
is the same as ‘A=AB"'R, 67), i.e. formally:
(DEF 3) AOB o 4 A=AB.
For, clearly, a se@(A) coincides with the intersectiog(A)n@B) if and only if @A) is a
subset ofp(B)! Furthermore, the relation ,A is in B” [A inest ipsi Bhay simply be defined
as the converse of(AB according to Leibniz’s remark in 8 T&: ,[...] ‘A contains B’ or, as
Aristotle says, ‘Bisin A”
(DEF 4) AB o g4 BOA.
In view of the law of reciprocity, one thus obtains the following condition:

(4)  @AIB) =trueiff@ (A) O @(B).
The next element of the algebra of concepts — and, by the way, dnevhiath Leibniz had
notorious difficulties — inegation Leibniz usually expressed the negation of a concept by
means of the same word he also used to express propositional negatidnptvi[non].
Especially throughout th&l, the statement that one concept, A, contains the negation of
another concept, B, is expressed as ‘A is not-B’ [A est non Blewhe related phrase ‘A

isn't B’ [A non est B] has to be understood as the mere negatioh odritains B’. As was



shown in LENzEN [1986], during the whole period of the development of the ,universal
calculus” Leibniz had to struggle hard to grasp the important diiterbetween ‘A is not-B’
and ‘A isn’'t B’. Again and again he mistakenly identified both statets, although he had
noted their non-equivalence repeatedly in other places. Here th@negfaconcept A will be
expressed asA ‘, while propositional negation is symbolized by means of the usyral'si.

Thus ‘A is not-B’ must be formulated as D@‘, while ‘A isn’'t B’ has to be rendered as

‘~A0B’ or ‘AB’. The intended extensional interpretation Af is just the set-theoretical

complement of the extension of A, because each individual which dafiddl tunder concept

A eo ipso falls under the negative concépt

5 WA)=dA).
Closely related with the operator of negation is thapassibility or self-consistency of
concepts. Leibniz expresses it in various ways. He often saigspéssible’ [A est possibile]
or ‘A is [a] being’ [A est Ens] or also ‘A is a thing’ [Ase Res]. Sometimes the self-
consistency of A is also expressed elliptically by ‘A e@st, ‘A is’. Here the capital lettef”
will be used to abbreviate the possibility of a concept A, while inpossibility or
inconsistency of A shall be symbolized biA)'. According to GI, lines 330-331, the
operatorP can be defined as followsA,notA is a contradictionPossibleis what does not
contain a contradiction @ not-A™
(DEF 5) P(B) <4 BOAA .3
It then follows from our earlier conditions (1), (3), and (4) tR&d) is true (under the
extensional interpretatiap) if and only if @A) is not empty:

(6)  @P(A)) = true iff g(A) # 0.
At first sight, this condition might appear inadequate, sincestaer certain concepts — such

as that of a unicorn — which happen to be empty but which may nevestbelesgarded as

3 This definition might be simplified as followB(B) « BOB.
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possible, i.e. not involving a contradiction. Remember, however, that the seniadér
discourse underlying the extensional interpretatiobhlofloes not consist @fctually existing
objects only, but instead comprises @dissibleindividuals. Therefore the non-emptiness of
the extension of A is bothecessary andufficientfor guaranteeing the self-consistency of A.
Clearly, if A is possible then there must exist at leastpmssibleindividual that falls under
concept A.

The main elements of Leibniz’'s algebra of concepts may thus beaured in the

following diagram.

Element of L1 SymbolizatioheibniZs Notation Set-theoretical
Interpretation
Identity A=B AcoB; A=B; coincidunt AetB; ... |@A) =@B)
Containment ALB A est B; A continet B @A) O @(B)
Converse ContainmenAiB A inest ipsi B @A) O @(B)
Conjunction AB AB; A+B @A) n @B)
Negation A Non-A PA)
Possibility P(A) A est Ens; A est res; A est possibi|gy(A) # [

Let's now have a brief look at somgiomsandtheoremsof L1! The subsequent selection of
principles, all of which (with the possible exception of the last)dmve been stated by

Leibniz himself, is more than sufficient to derive the laws of the Booleabh@@®f sets:

Theorems of L1| Formal version Leib@izersion

ConT 1 ADA .Bis B" (Gl, § 37)

CONT 2 AOB OBOC - AOC .[...]IfAisBandBis C, Awillbe C" Gl, § 19)

CONT 3 ACB - A=AB .Generally AisB' is the same aA =AB” (Gl, 8
83)
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Cong1 AOBC -~ AOB OAOC |,That A contains B and A contains C is the same
as that A contains BC'G|, § 35; cf.P 58, note 4)

CoNJ 2 ABLA LABis A" (C, 263)

CoNJ 3 AB[IB ,ABis B" (Gl, § 38)

CoNJ4 AA=A LAA = A" (GI, § 171, Third)

CoNJ5 AB = BA LAB 00 BA” (C. 235, # (7))

NEG 1 A=A .Not-not-A = A” (Gl, § 96)

NEG 2 AZA »A proposition false in itself is ‘A coincides with
not-A™ (Gl, § 11)

NEG3 AB -~ BOA »In general, ‘A is B’ is the same as ‘Not-B is notr
A” (Gl, 8§877)

NEG4 AAB ,Not-A is not-AB” (Gl, § 76a)

NEG5 [P(A) [J AOB - AOB |»If Ais B, therefore Ais not not-B"Gl, § 91)

Poss1 I(AB) ~ ACB Hf I say ‘A not-B is not’, this is the same as if |
were to say [...]'A contains B”Gl, § 2004

Poss2 AOB OP(A) - P(B) .If A contains B and A is true, B is also trueBl
§ 55P

Poss3 I(AA) »A not-A is not a thing” GI, 8 171, Eighth)

Poss4 AAIB »[...] the round square is a quadrangle with null-
angles. For this proposition is true in virtue of an
impossible hypothesisQP 7, 224/5¢

ConT 1 and ONT 2 show that the relation @bntainments reflexive and transitive: Every
concept contains itself; and if A contains B which in turn contairnth€h A also contains C.
ConT 3 shows that the fundamental relatioflB\ might be defined in terms of conceptual
conjunction (plus identity).

CoNJ 1 is the decisive characteristic axiom foonjunction and it establishes a

connection betweetonceptuakonjunction on the one hand gmapositionalconjunction on

4 Pparkinson translates Leibniz's ,Si dicam AB na €“ somewhat infelicitous as ,If | say ,AB doast
exist’..." thus blurring the distinction betweerc{aal) existence and mere possibility. For an a#téve
formulation of Poss 1 cC., 407/8: ,[...] si A est B vera propositio est, Am8 implicare
contradictionem”, i.e. ‘A is B’ is a true propositi if A non-B includes a contradiction.

S At first sight this quotation might seem to exggesome law of propositional logic suchmasdus ponendf
A - B and A, then B. However, as Leibniz goes on tdarpwhen applied to concepts, a ,true“ term is to
be understood as one that is self-consistent Hy..a false letter’ | understand either a faleen (i.e. one
which is impossible, or, is a non-entity) or a éafgoposition. In the same way ,true’ can be urndeis as
either a possible term or a true proposition“ (ipiéds to the contraposited form 068s2, ALB OI1(B) -
I(A), cf. also the special case@, 310: ,Et sane si DB est non Ens [...] etiam C&B non ens".

6 As the text-critical apparatus MVI, 4, 293 reveals, Leibniz had originally addgdimirum de impossibile
concluditur impossibile”. So in a certain way hesveavare of the principle ,ex contradictorio quodtib
according to which not only a contradict@ropositionlogically entails any arbitrary proposition, bls@a
contradictory or ,impossible¢onceptcontains any other concept.
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the other: Concept A contains ‘B and C’ iff A contains B and A asotains C. The
remaining theorems @ 2 - GoNJ 5 may be derived from @J 1 with the help of
corresponding truth-functional tautologies.

Negationis axiomatized by means of three principles, the law of doubldioeddeG
1, the law of consistencyed 2, which says that every concepts differs from its own negation,

and the well known principle of contrapositioned® 3, according to which concept A

contains concept B ifB containsA . The further theorerNEG 4 may be obtained frome
3 in virtue of ®NJ 2.

The important principle &s 1 says that concept A contains concept B iff the
conjunctive concept A Not-B is impossible. This principle also charaes negation, though
only indirectly, since according toEb 4 the operator okelf-consistencyf concepts is
definable in terms of negation and conjunctioas®2 says that a term B which is contained
in a self-consistent term A will itself be self-consistétiss 3 easily follows from Bss1 in
virtue of GONT 1. Ross4 is the counterpart of what one calls ,,ex contradictorio quodlibet” in
propositional logic: An inconsistent concept contains every other contleigtiaw was not

explicitly stated by Leibniz but it may be regarded asrmumely Leibnizian theorem because
it follows from RPoss 1 and ®ss 3 in conjunction with the observation that, sincé As

inconsistent, so is, according to$s2, also AA B.
As was shown in ENZEN [1984b: 200], the set of principles ¢@T 1, GONT 2, GONJ
1, NeG 1, Ross 1, Ross 2} already provides a complete axiomatization of the algelbra

concepts which is isomorphic to the Boolean algebra of sets.

3 Leibniz’s Calculus of Strict Implication
Although Leibniz never spent much time for the investigation of the prtgpes of
propositional logic, he must yet be credited with the following discovery of astm

importance. He devised a simple, but ingenious method to transforrgéteaaof concepts
12



into an algebra of propositions. Already in the fragmiptationes Generalegprobably

written between 1683 and 1683 eibniz pointed out to the parallel between the containment
relation among concepts and the implication relation among propositiohaslie simple
proposition ‘A is B’ (where A is the ,subject”, B the ,predicgtés true, ,when the predicate

is contained in the subject”, so a conditional proposition ‘If A ishBntC is D’ (where ‘A is

B’ is designated as ‘antecedent’, ‘C is D’ as ‘consequesttjue, ,when the consequent is
contained in the antecedent” (&.VI, 4, 551). In later works Leibniz compressed this idea

into formulations such as ,a proposition is true whose predicate igigedtin the subjear

more generallywhose consequent is contained in the anteceefitie most detailed
explanation of the basic idea of deriving the laws of the algelppeopbsitionsfrom the laws

of the algebra ofonceptsvas sketched in 88 75, 137 and T&9as follows:

.If, as | hope, | can conceive all propositions sssms, and hypotheticals as categoricals [...] this
promises a wonderful ease in my symbolism and aisatf concepts, and will be a discovery of the
greatest importance” [...]

-We have, then, discovered many secrets of greppitance for the analysis of all our thoughts and
for the discovery and proof of truths. We have aisced [...] how absolute and hypothetical truths
have one and the same laws and are contained isdime general theorems” [...]

,0ur principles, therefore, will be these [...] $ix whatever is said of a term which contains arter

can also be said of a proposition from which anogreposition follows” P 66, 78, 85).

To conceive all propositions in analogy to concepts (,instar termingroreans in particular
that the hypothetical proposition ‘i then * will be logically treated exactly like the
fundamental relation of containment between concepts, ‘A contains Bhermore, as
Leibniz explained elsewhere, negations (and conjunctions) of propositions aretcbred

just as negations (and conjunctions) of concepts:

7 Cf.AVI, 4, #131.

8 Cf.C.401: ,vera autem propositio est cujus praedicatontinetur in subjectael generaliusujus
consequens continetur in antecedente* (my emphasig)lsoC. 518: ,Semper igitur praedicatum seu
consequens inest subjecto seu antecedenti.
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LIf Ais a proposition or statement, by non-A | wmgtand the proposition A to be false. And if | $ay
is B’, and A and B are propositions, then | takis o mean that B follows from A [...] This will also

be useful for the abbreviation of proofs; thusoif i is A’ we would say ‘C’ and for ‘L is B’ we ga
‘D’, then for this [hypothetical] ‘If L is B, it fllows that L is B’ one could substitute ‘C is D9

One thus obtains the following ,mapping” of the primitive formulas loé &lgebra of

concepts into primitive formulae of an algebra of propositions:

ADB a_p
A -a
AB alpB

As Leibniz himself mentioned, the fundamental laws® 1 does not only hold for the
containment-relation between concepts but equally for the entailnedation between
propositions:

»A contains B is a true proposition if A non-B eitgaa contradiction. This applies both to categatic

and to hypothetical propositions, e.g., ‘If A cdntgaB, C contains D’ can be formulated as follows:

‘That A contains B contains that C contains D’; risfere ‘A containing B and at the same time C not

containing D’ entails a contradiction0
Hence AIB « I(AB) may be ,translated” intoo(—B) — =0(al~p). This formula shows
that Leibniz’s implication is not a material but rathestect implication. As was already
noted by RSCHER[1954: 10], Leibniz’s account provides a definition of ,entailment in germ

of negation, conjunction, and the notion of possibility”,damplies iff it is impossiblethat

9 cf.c., 260, # 16: ,Si A sit propositio vel enuntiatfer non-A intelligo propositionem A esse falsam. Et
cum dico A est B, et A et B sunt propositionesgliigo ex A sequi B. [...] Utile etiam hoc ad compast
demonstrandum, ut si pro L est A dixissemus C etpest B dixissemus D pro ista si L est A sequifuod
L est B, substitui potuisset C est D.”

10 cf.c., 407: Vera propositicest A continet B, si A non-B infert contradictioneBomprehenduntur et
categoricae et hypotheticae propositiones,. si A continet B, C continet D, potest sic famn A continere
B continet C continere D; itaque A continere Bsietul C non continere D infert contradictionem”dsed
emphasis is mine).
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o is true whilep is false. This definition of strict implication which was to joe-invented”,

e. g., by C. I. Lewis1 had been formulated also in the ,Analysis Particularum’:
~Thus if | say ‘If L is true it follows that M igte’, this means that one cannot suppose at theesam
time that L is true and that M is falsé®

As regards the other non-primitive elementsLdf the relation ‘A is in B’ represents,
according to BF 4, the converse of [AB. Hence its propositional counterpart is the ,inverse
implication”, a — (. According to [EF 2, the coincidence relation A=B is tantamount to
mutual containment, BB [1 BOA, which will thus be translated into a mutual implication
between propositionsg(— B) O (B - a), i.e. into the strict equivalence, - [. Next,
according to BF 5, the possibility or self-consistency of a concept B amoumtthe
conditions BIA A . In the field of propositions one hence obtains thit possiblea, if and

only if a does not entail a contradiction(a - (BL-f)).

AIB @ < B) [oa (B - a)]
A=B aoPB [ca (@ - B)TOE - a)]
P(A) o0l [a—(a - BEP)]

Given this ,translation”, the basic axioms and theorems of thebedgof concepts listed in

section 2 may be transformed into the following set of laws of an algebra of propsisiti

Basic Principles of PL1
ImPL 1 (a - a)
IMPL 2 (@ - B OP-Y) - (@-V)
IMPL 3 (a - B) o (a0 - alP)

11 cf. e.g., Ewis & LANGFORD[1932: 124]: ,The relation of strict implicatioran be defined in terms of
negation, possibility, and product [...] Thus ,ppies g“[...] is to mean , It is false that it i®gsible that p
should be true and q false”.

12 cf.A VI, 4, 656: Jtaque si dic&i L est vera sequitur quod M est vesansus est, non simul supponi potest
quodL est vera, et quolll est falsa™.
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Consl (@ - BY) « ((@-PB) O(@-y)
CONJ 2 alB - a

CoNJ 3 alp - B

CoNJ 4 alo o o

CoNi5 aB - Bl

NEG 1 (-=0 o )

NEG 2 ~(@ - =0)

NEG 3 @-B) o (=B~ -0)

NEG 4 ~a - = (alp)

NEG5 [Ca O (a - B) - = (@ - =P)
Poss1 (@ - PB) « ~0a0-p)
Poss2 (@ - B) 00a — OB

Poss3 ~0(a O-a)

Poss4 (alka) - B

Although Leibniz didn’t care very much about propositional logic, he happemgult
forward at least some of these laws in scattered fragmeénmtsnstance, in the first juridical
disputation De Conditionibus the transitivity of the inference relationmAL 2, was
characterized as follows: ,The Co[ndition] of the co[ndition] e tco[ndition] of the

co[nditioned]. If by positing A B will be posited and by positing B C will be positea, #feo
by positing A C will be positedt3 As regardsmpL 1 and ®NJ 2, 3, Leibniz mentions in the

fragment ,De Calculo Analytico Generale” the ,Primary ConsequercesB, therefore A is

B [...] Ais B and C is D, therefore A is B, or as well [tefre] C is D”, and the

13 cf.A vl 1, 110 »Clonditi]Jo C[onditio]nis est C[ond]t C[onditiona]ti. Si posito A positur B, et posiB
positur C; etiam posito A positur C.” For a disdassof Leibniz’s early work on juridic (or deonti@@gic
cf. SCHEPERS[1975].
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corresponding ,Axioms [...] 3) If Ais B, also Ais B. If Ais Bnd B is C, also A is B".
Furthermore the definition of strict implication in terms of strict eqeveé plus conjunction,

IMpPL 3, was exemplified in another fragment as follows:

»A true hypothetical proposition of first degree‘l§ A is B, and from this it follows that C is [D...]
Let the state of affairs ‘A is B’ be called L, athgk state of affairs ‘C is D’ be called M. Then one

obtains L = LM; in this way the hypothetical [progition] is reduced to a categorical” (cC. 408).

Moreover in ,De Varietatibus Enuntiationum” Leibniz put forward pribeiCong 1 for the
special case A="ais b’, B="'eis d and C =l is by maintaining that the proposition ,If a
is b it follows that e is d and | is m” can be resolved intoctirgunction of the propositions
LIf ais b it follows that e is d” and ,If a is b it followthat | is m” (cf.A VI, 4, 129). Versions

of the principle of double negationeN1, may be found in 8§ &l or, for the special cases of

propositions of the type ‘A=B’ and ‘AB’, more formally inC. 23514, Finally the ,Analysis
particularum” contains besides the above quoted paraphrasessfiPalso the law of
(propositional) contrapositiones 3: ,If a proposition M [...] follows from a proposition L
[...], then conversely the falsity of the proposition L follows frohe tfalsity of the
proposition M”.

The above collection of basic principles does not yet, however, ctaestitgenuine
calculus of (modal) propositional logic. At least some additionalles of deductionare
needed which allow one to derive further theorems from these ,axigksstvas shown in
LENZEN [1987], Leibniz was well aware of the validity of the rule of (stmefdus ponens
(MP) @-B),a |0 B
and of the rule of conjunction:

(RC) o,B |0 aOp.
Furthermore it was argued there that the mappiniglahto PL1 yields a calculus of strict

implication in the vicinity of Lewis’ system S2°. This does notamehowever, that Leibniz

14" idem sunt Ax B [...] et A non nonro B”; cf. alsoC. 262: ,A non non est B, idem est quod A est B*
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would have favored such a weak system as the proper calculustbicjateodal logic. For
example, Leibniz would certainly have subscribed to the validithetruth-axiom a - a

(or, equivalently,a — ¢a). But, for purely syntactical reasons, these laws can never b
obtained from corresponding theorems biby way of Leibniz’'s consideration of
propositions ,instar terminorumt® For reasons of space, this issue shall not be discussed
here further — the reader is referred to the detailed expositiLENZEN [1987]. Only a few
more theorems for the modal operatorand¢ shall be considered in the subsequent section

where Leibniz’s version of a possible worlds semantics is represented.

4 Leibniz’s Possible Worlds Semantics
The fundamental logical relations between necessjtpossibility, ¢, and impossibility can
be expressed, e.g., by:
(NEC 1) () o =0(=0)
(NEc 2) =0(a) o (—0).
Of course, these laws were familar already to logicimg before Leibniz. However,

Leibniz not only formulated, e.g.,B¢ 1 already as a youth, at the age of 25, as follows:
-Whenever the question is about necessity, thetogues also about possibility, for if something is
called necessary, then the possibility of its ojipds negatedl6

but he also ,proved” these relations by means of an admirably stsaantic analysis of

modal operators in terms of ,possible cases”, i.e. possible worlds:

~Possible is whatever can happen or what is truen some cases
Impossible is whatever cannot happen or whatus tr in no [...] case
Necessary is whatever cannot not happen or whatiés in every [...] case
Contingent is whatever can not happen or what @][true in some casel’

15 E.g.,0 - ¢a could only result from mapping the formul&IR(A) or A - P(A) into PLZ1; but none of these
formulae is syntactically well-formed!

16 cf.A v, 1, 460: ~Quoties autem de necessitate quaestiode possibilitate quaestio est, nam quid
necessarium dicitur, possibilitas oppositi negatur”
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Hence a proposition is possibleiff a is true in at least one casejs impossibleiff a is true

in no casep is necessanyff a is true in each case; and, finalty,is contingent i.e. non-

necessary, iffl is not true in at least one cak&Now this analysis of the truth-conditions for
modal propositions not only entails the above mentioned lamzsINand 2, but it also gives
rise to the principle that whenever is necessaryp will be possible as well, and by
contraposition: ,Because all that is necessary is possiblethall is impossible is
contingent"19

(NEc 3) a - O(a),

(Nec 4) =0(a) - = (a).

Leibniz ,demonstrates” these laws by reducing them to correspoiaiivs for (universal and
existential) quantifiers such as: dfis true in each case, thenis true in at least one case”.
These quantificational principles were tacitly presupposed byniziwho only mentioned
them in passing by maintaining (very elliptically), e.g.: |'At the same as ‘none not™ or

»All not’ is the same as ‘none™. Cf. the following ,proof” of ¢ 2:

J-..] ‘necessarily not happen’ and ‘impossible’ caiine. For also ‘none’ and ‘everything not’
coincide. Why so? Because ‘none’ is ‘not somethifigvery’ is ‘not something not’. Therefore
‘everything not’ is ‘not something not not’. Theot¥atter ‘not’ destroy each other, thus remainst'no

something’.”

On the background of certain rules for the negation of the quantifieessions ‘all’, ‘some’,
and ‘none’, which reflect the core ideas of the traditional theoyppbsition of categorical

forms, Leibniz thus argues that an impossible proposition whichse falevery case is the

17 ci. A Vi, 1, 466:

.Possibile  est quicquid potest fieri seu quod weest quodam casu
Impossibile est quicquid non potest fieri seu querum est nullo [...] casu
Necessarium est quicquid non potest non fieri smdgerum est omni [...] casu
Contingens est quicquid potest non fieri Seu querdw est quodam non casu.”

18 As this quotation shows, Leibniz uses the notibcontingency not in the modern sense of ,neither

necessary nor impossible’ but as the simple negatiopnecessary’.

Cf. A VI, 4, 2759: ,Quia omne necessarium est possiifee impossibile est contingens seu potest non
fieri".

19
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same as a proposition which is not true in any case. Let it béamed in passing that the

analogue ,proof” of c 3 contains a minor mistake which is quite typical of LeiBfiz

.[...] everything which is necessary is possible. Rdways, when ‘everything is’, also ‘something is’
[the case]. Thus if ‘everything is’, ‘not somethiisgnot’, or ‘something is not not'. Hence ‘sometii

is”. 21
To be sure, a necessary propositiowhich is true in every case, a fortiori has to be trugtin
least one case, henaeis possible. But this principle - or the corresponding quantificational
law (Oxa — [Xa) — cannot be correctly derived from the presupposed equivaleioe 4
- [X-0a) plus the law of double negatiomta ~ a) in the way attempted by Leibniz. For
‘not something is not’, i.ea[X—a, is not the same as ‘something is not not’,lide: - a!

It cannot be overlooked, however, that the truth conditions quoted fronatiyeDe
Conditionibus even when combined with Leibniz’'s later views on possible worldstofa
come up to the standards of modern possible worlds semantics, sinetbimz’s work
nothing corresponds to the accessibility relation among worlds. Dheref is almost
impossible to decide which of the diverse modern systems like T§%4tc. best conforms
with Leibniz’s views. According to ®3ER[1969], Leibniz’'s modal logic is tantamount to S5.
This means in particular that Leibniz accepted the characterisbicati S4:

(NEC5) a- a.

Poser pointed out to the following passage in ,De Affectibus”: ,Hoatwean impossibly be
actually the case, that can impossibly be posd8letich rather convincingly shows that, in
Leibniz’s view, any impossible proposition is impossibly possible:

(NEC 6) =00 - =000,

20 | so far as, again and again, Leibniz had senmmoblems in distinguishing ,non est’ and ,est noh
LENZEN [1986].

21 cf.A VI, 1, 469; .[---] omne necessarium est possiblam semper, si omnis est, etiam quidam est. Si enim
Omnis est, non quidam non est seu quidam non rioEmre® quidam est”.

22 cf. Grua, 534: ,Nam guod impossibile est esse actu, id sajinle est esse possibile”.
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However, Poser failed to give any quotation (or any other compekiagon) to show that
Leibniz would also have accepted the stronger S5-prinémple. ¢a, according to which
any possible proposition would be necessarily possible. Moreover, aaguesd by AAMS

[1982], the latter principle appears to be incompatible with Leibmihifosophical view of

necessity as expressed, e.g., inGhe

»(133) A true necessary proposition can be provedrbduction to identical propositions, or by
reduction of its opposite to contradictory prop@sis; hence its opposite is called ,impossible’.

(134) A true contingent proposition cannot be restlico identical propositions, but is proved by
showing that if the analysis is continued furtherdafurther, it constantly approaches identical

propositions, but never reaches then®; 7).
If a necessaryropositiona can be reduced in finitely many steps to an ,identity”, thiamse
that a propositiom is possibleif and only if it is not refutable in finitely many steps (iits
negation cannot be reduced in finitely many steps to an ,identyt)on this understanding

of possibility and necessity, the S5 principte - Oa appears to be blatantly false.

5 Leibniz’s Deontic logic
Leibniz saw very clearly that the logical relations betwten ,Modalia luris” obligatory,
permittedandforbiddenexactly mirror the corresponding relations between the aletbdal
operatorsnecessarypossibleandimpossibleand that therefore all laws and rules of alethic

modal logic may be applied to deontic logic as well:
Just like ‘necessary’, ‘contingent’, ‘possible’ dn'impossible’ are related to each other, so also
‘obligatory’, ‘not obligatory’, ‘permitted’, and ‘orbidden’.23

This structural analogy rests on the important discovery thatdoatic notions can be
defined by means of the alethic notions plus the additional ,logm@istant of a morally

perfect man [,vir bonus”]. Such a ,virtuous maiy;,is characterized by the requirements that

23 Cf.A VI, 4, 2762: ,Uti se habent inter se necessaricontingens, possibile, impossibile; ita se habent
debitum, indebitum, licitum, illicitum®.
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(1) b strictly obeys all laws, () always acts in such a way that he does no harm to anybody,

and (3)b loves or is benevolent to all other peoffeGiven this understanding of the ,vir

bonus”,b, Leibniz explains:

,Obligatory is what is necessary for the virtuomsn as such
not obligatory is what is contingent for the uibus man as such
permitted is what is possible for the virtuoummnas such
forbidden is what is impossible for the virtuonan as such22

If we express the restriction of the modal operatoasmd¢ to the virtuous man by means of a
subscript b, these definitions can be formalized as follows:

(DEON 1) O(a) o p(a)

(DEON2)  E(0) o Op(a)26

(DEON 3) F(a) o =0p(a)

Now, as Leibniz mentioned in passing, all that is unconditionally ssace will also be
necessary for the virtuous man as sééh:

(NEC7) (@) - o(0).

Hence the fundamental laws for the deontic operators can be derived from cormegpensdi

of the alethic modal operators in much the same wayNagE®RsON [1958] reduced deontic

logic to alethic modal logic. As Leibniz pointed out, two differdasses of theorems may be

24 Ccf.A VI, 1, 466: ,Vir bonus est quisquis amat omnes'yI, 4, 2851: ,Vir bonus est qui benevolus est erga
omnes" andA VI, 4, 2856: ,Vir bonus censetur, qui hoc agifpubsit omnibus noceat[que] nulli.” It is
interesting to note that Leibniz denotes the emtiseipline of jurisprudence as the ,science ofveious
man* (,scientia viri boni“) and justice as the ,wwitas viri boni“.

25 Cf.A VI, 4, 2758:

,Debitum  est, quod viro bono qua tali necessarium
Indebitum  est, quod viro bono qua tali contingens
Licitum est, quod viro bono qua tali possibile
llicitum est, quod viro bono qua tali impossibfle.

In the former edition ifGrua 605 ‘debitum’ was mistakenly associated with ‘Gogens’. Cf. als® VI, 4,
2863: ,quod Viro bono possibile, impossibile, nessagim est, si nomen suum tueri velit, id justuve si
licitum, injustum, ac denique debitum esse."
26 \We here use the letter ,E’ (reminding of the Gannrerlaubt’) instead of ,P’ for ,permitted’ in oed to
avoid any confusions with the operator for the gty (or self-consistency) of concepts!
27 Cf.A VI, 4, 2759: ,Nam omne necessarium est necessaritorbono”.
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distinguished. First we have ,Theorems in which the juridic modsléiee combined by

themselves”, i.e. theorems describing the logical relations among the deondiospe.g.:

~Everything which is obligatory is permitted [...] Exything which is forbidden is not obligatory [...]
Nothing which is obligatory is forbidden [...] Notlginwhich is forbidden is obligatory [...]
Everything that is forbidden is obligatory to omé&nd everything that is obligatory to omit is
forbidden. [...] Everything that is forbidden to onstobligatory and everything which is obligatosy i
forbidden to omit [...] Everything which is not oldigry is permitted to omit and everything that is

permitted to omit is not obligatory”.
(DEon4da) Of) - E(0)
(DEON4b) =E(a) - =0O(a)
(DEON5a)  Of) - ~F(0)
(DEON5D)  F@) - =O(0)
(DEON 6) F@) - O(-a)
(DEON 7) Oo@) - F(-a)
(DEON 8) -0(0) « E(=0)
As Leibniz ,demonstrates” (or, at least, makes plausible),etHasis are immediate
counterparts of the well-known logical relations between the alethodalitis. E.g.,

concerning [BoN 6 he remarks:

.Everything which is forbidden is obligatory to amiAnd everything that is obligatory to omit is
forbidden, i.e. ‘forbidden’ and ‘obligatory to orhitoincide. Because ‘necessarily not happen’ and
‘impossible’ coincide. For also ‘none’ and ‘everith not’ coincide”. (Cf.A VI, 1, 469).

As a second class of theorems one obtains certain ,Theorems im thliguridic modalities
are combined with the logical modalities”. Thus in the ,Elementé Naturalis” Leibniz
mentions the following principles concerning the relations betweenalétbic concepts

‘necessary’, ‘possible’ and ‘impossible’ on the one hand and the demtions ‘obligatory,
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‘permitted’ and ‘forbidden’ on the other hand: ,Everything which is neagsis obligatory”,

or, by contraposition: ,Everything that is not obligatory is not necessary buhgent28:
(DEON 9a) (a) - O(a)
(DEON9D) =0O(0) - = (a)
Furthermore: ,Everything that is necessary is permitted”, ggina by contraposition,
~Everything that is forbidden is not necessary but contingenid.{:
(Deon10a) (o) - E(a)
(DEON 10b) =E(a)-- (0)
Next, ,Everything that is permitted is possible”, or ,Everythitigit is impossible is not
permitted” (bid.):
(DEon1la) E@) - O(a)
(DEON 11b) =9(a) - ~E(a)
Finally, ,Everything which is obligatory is possible”, or ,Evdrytg which is impossible is
not obligatory, i.e. may be omitted by the virtuous né&h”
(DEON12a) Of1) - O(a)
(DEON 12b) =9(a) - =O(a)
To illustrate Leibniz’'s way of demonstrating these laws in ,Miad@t Elementa Juris
Naturalis” let us consider #N 10a which is formulated there with the word licitum’ instead
of ,justum’ expressing ‘permitted’:

~Everything which is necessary is permitted, i.ecessity has no law.

For everything which is necessary is necessaryhfervirtuous man. If something is necessary for the

virtuous man, its opposite is impossible for thtueius man. What is impossible for the virtuous man

is anyway not possible for the virtuous man as suehit is not permitted. Therefore the opposite

28 cf.A VI, 1, 470: ,Omne indebitum nec necessarium est,®ntingens*

29 cf.A VI, 1, 470; ,Omne impossibile indebitum seu ontids! est viro bono*.
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something necessary is not permitted. Howevehefdpposite of something is not permitted, then
itself is permitted.80

By means of the ,bridge principle’e¢ 7, (a) is first shown to entail ,(a). Next Leibniz
makes use of the following laweg 8 which relativizes the usual equivalencec\ to the
Lvirtuous man”:

(NEC 8) b(0) « = 0p(— ).

According to EON 2, the resulting formula Oy(=a) is equivalent to-E(-a) which in turn
entails the desired conclusionog(y way of the further theorem:

(DEON13) -E(-a) - E(a).

Note, incidentally, that in an earlier proof which was later deléty Leibniz, the conclusion
Op(0) or E@) had been obtained more directly by inferringa) from the premise (a) and
then making use of the following law which relativizesd\B to the persoh:

(NEC9) b(0) — On(a)

For, as Leibniz remarks: ,Everything which is necessary ferwuintuous man is anyway
possible for the virtuous man as such, i.e. it is permi#ed3imilarly Leibniz proves Bon

12b as follows:

».Nothing which is impossible is obligatory, i.e ette is no obligation for impossibles.
For everything which is impossible is impossibletfee virtuous man. Nothing which is impossible

for the virtuous man is anyway possible for théudus man as such. What is not possible for the

virtuous man as such is not necessary for the sirstuman as such, i.e. it is not obligator%?.

30 Cf.A VI, 4, 2759/60: ,O0mne necessarium est licitum, Becessitas non habet legem.Nam omne
necessarium est necessarium viro bono. Quod esssegum viro bono, ejus oppositum est impossiiite
bono. Quod impossibile viro bono utcunque non essibile viro bono qua tali seu licitum. Ergo neszes
oppositum non est licitum. Cujus autem oppositum @st licitum, id ipsum est licitum.”

31 cf.A VI, 4, 2759: ,0mne necessarium viro bono utcunesiepossibile viro bono qua tali; hoc est licitum”.

32 cf. A VI, 4, 2759 Nullum impossibile est debitum, seapossibilium nulla est obligatio. Nam omne
impossibile est impossibile viro bono. Nullum impilile viro bono utcunque est possibile viro bowa g
tali. Quod non est possibile viro bono qua tali mshnecessarium viro bono qua tali, seu non dstue.
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Here again by means of the ,bridge principleEd\7, = 0p(a) is first shown to follow from

(=a) or=9(a); second, Mc 9 transformed by contraposition intd,(a) - = p(a) is used

to derive- p(a) which, thirdly, according to EoN 1, gives the desired conclusie®(a).
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